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Abstract

The particle immersed in a fluid (hereafter called as a “tracer”) shows Brow-
nian motion due to the collisions of surrounding fluid molecules. The Brow-
nian motion is often written by the Langevin equation, which is the coarse
grained description and has the limited applicability. When we focus on the
short time scale where the number of collision between the tracer and fluid
molecules is not sufficiently large, the Langevin description is not valid. In
such a time scale, we have to consider the individual collisions. In this work,
we investigated the short time dynamics of the tracer in ideal gas by using
the simulations and theory from the view point of the collisions. Some parts
of the contents in this thesis have been published[1].
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Chapter 1

Introduction

1.1 Diffusion of particles in fluid

The micro or nano meter sized particle immersed in Newtonian fluid (here-
after called as a “tracer”) shows the diffusive motion in the long time scale
where the number collisions between the tracer and fluid molecules is suffi-
ciently large[2]. In such a time scale, the displacement of the tracer Ar and
the time ¢ have the linear relation as

(Ar(t)*) = 6Dt (1.1)

where the (---) is the equilibrium statistical average and D is the diffusion
coefficient. The D is related to the fluid viscosity as
kgT
6mno

D=

(1.2)

where kg is the Boltzmann constant, 7" is the temperature, n is the viscosity
and o is the size of the tracer. This relation is called the Stokes Einstein
relation [3]. From this relation, we can understand that the dynamics of the
particle and fluid property has the strong relation. This relation is simple
and widely used in the physics, chemistry and engineering etc.

However, the Stokes-Einstein relation can be used only for the diffusive
dynamics. If we see the ballistic motion of the tracer, the displacement of
the tracer is proportional to the square of the time [4, 5, 6] and the Stokes-
Einstein relation does not describe such a behavior.

1.2 Langevin equation

If we see the dynamics of the tracer including the ballistic motion the Langevin
equation is useful. In this section, we introduce the brief property and the
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limit of applicability of this equation.

The dynamics of the tracer and all the fluid molecules are completely
determined by the initial positions and velocities of the tracer and all the
fluid molecules via the Hamiltonian if the dynamics obeys the classical me-
chanics (if we consider the quantum effects, the dynamics is not completely
determined because of the uncertainty principle between a position and a mo-
mentum). However, the analysis of all the degrees of freedom of the tracer
and all the fluid molecules are generally difficult. In the situation where we
are interested only in a partial degree of freedom, coarse graining methods
are often useful. If we only see the dynamics of the tracer, the generalized
Langevin equation (GLE) for the coarse-grain for the degrees of freedom of
the fluid molecules is widely used [7, 8, 9].

dQR dR(t)
dt2 = / K(t o ——=dt' + W (t) (1.3)
where M is the mass of the tracer, R is the tracer position, I' is the fric-
tion coefficient kernel considering the relaxation of the fluid and W is the
Gaussian noise. This Gaussian noise is justified by the central limit theorem
when the number of the collisions between the tracer and fluid molecules is
sufficiently large.

Meanwhile, when we focus on the short time scale where the fluid molecules
does not collide with the tracer many times, the Gaussian noise approxima-
tion can not be justified. If the GLE works, the distribution of the dis-
placement is Gaussian because the GLE is a linear equation and the noise is
Gaussian. In contrast to this, the noise is non-Guassian if the displacement
is non-Gaussian. Thus, we can check the validity of the Gaussian approxima-
tion by analyzing the Gaussianity of the displacement. Rahman studied the
dynamics of the Lennard-Jones fluid by the simulation and showed that the
distribution of the displacement of the constituent particles is non-Gaussian
in the short time scale[10]. Yamaguchi and Kimura studied the dynamics
of the tracer in the dilute hard sphere gas by the Monte Carlo method and
showed that the displacement of the tracer is non-Gaussian in the short time
scale[11]. In contrast, Montgomery showed that the Langevin description
can be justified even for the short time dynamics of the tracer in a limited
case[12]. Namely, for the case where the tracer mass is sufficiently large and
the gas is dilute, the Boltzmann equation can be expanded in terms of the
mass ratio and the Fokker-Plank equation corresponding to the Lengevin
equation can be derived. Therefore, we do not blindly use the GLE for the
dynamics of the tracer in the short time scale except for the limited case. In
the short time scale, we have to consider the individual collisions between
the tracer and the fluid molecules.



1.3 Kinetic theory of gases

If we consider the dynamics of the tracer from the collision picture, the kinetic
theory[13, 14, 15] is useful. The kinetic theory is one of the most developed
area in the statistical physics. This theory provides the several frameworks
to analyze the diffusion constant, viscosity, thermal conductivity, etc.

Although the gas kinetic theory is powerful, this has the limitation of
the applicability. The gas kinetic theory treats the phase space distribution
function of the particles. To understand the dynamics of a particle (or a
tracer) in the fluid, we have to obtain the one-body distribution function
from the Liouville equation of the N-body distribution function by integrat-
ing all degrees of freedom other than the particle of interest. This integra-
tion can be done formally, but since the results are not closed only in the
one-body distribution, we can not proceed to the specific calculations. In
other words, we need (n + 1)-body distribution to get the n-body distribu-
tion. This is called the BBGKY (Bogoljubov-Born-Green-Kirkwood-Yvon)
hierarchy[16, 17, 18]. To overcome the difficulty of the calculation due to the
BBGKY hierarchy, the density expansion methods are employed[16]. This
methods can reduce the 2-body distribution function to the functional of
the two 1-body distribution functions in a low density limit, then this is the
derivation of the Boltzmann equation (Boltzmann derived this equation by
a phenomenological consideration[19]). In an operation of the reduction of
the 2-body distribution function, since the static and dynamics correlations
are usually eliminated, the Boltzmann equation can be justified only for the
dilute fluid.

Enskog extended the Boltzmann equation to deal with non dilute fluid
by incorporating the static correlation[15]. His approach succeeded for the
moderately dense fluids with packing fraction less than 30% to describe the
transport coefficient such as the diffusion constant or viscosity. However, for
higher density cases, Enskog theory fails because dynamic correlation of the
collisions between the fluid particles which is not considered in the theory
significantly affects the dynamics of the particles [20].

Thus, the kinetic theory provides the useful ways to analyze the dynamics
of tracer or fluid particles. However, such a theory does not work for the dense
system in which the dynamic correlation is dominant.



1.4 Stochastic process of the molecular dy-
namics

Not only the kinetic theory but also the stochastic process has been utilized
for the description of the dynamics of the tracer in fluids. Lindenberg and
Cukier [21] analyzed the dynamics of the hard sphere tracer in low, inter-
mediate and high density fluids by using the stochastic point process. They
incorporated the complex correlations due to the particle interactions into
the distribution of the free time between the collisions by the phenomenologi-
cal considerations and reproduced the characteristic behaviors of the velocity
autocorrelation function of the tracer for the low, intermediate and high den-
sity fluids. However, the time interval distributions that they introduced are
not valid. Actually, Taloni et al. [22] showed that the distribution of free
time is almost exponential by using the hard core simulations, even if the
fluid density is high.

Burshtein and Krongauz [23] analyzed the velocity autocorrelation func-
tion of the tracer in dense hard sphere fluids in the short time scale and pro-
posed the several phenomenological theories to descrive the negative velocity
correlation typically seen in high density fluids. Although thier theories can
reproduce the characteristic behavior of the velocity autocororrelation func-
tion, the various assumptions for the collision statistics in the theories are
not validated.

Actually, the stochastic process methods is useful for the descreption of
the hard sphere dynamics, the collision statistics employed in the theory
should be charefully chosen.

1.5 Purpose and constitution

As we explained above, the short time dynamics of the tracer in a dense fluids
is not fully understood. The difficulty of the dynamics is due to the dynamic
correlation cased by the particles interctions. To tackle this problem, we
consider that the dynamics of the tracer in a relatively simple system should
be understood. In this study, we investigate the short time dynamics of the
tracer in the ideal gas composed of the point masses.

In chapter 2, we explain the methods of the simulation and check the
varidity of our sysytem for the mechanics and statistical mechanics. In chap-
ter 3, we analyze the dynamics of the tracer in ideal gas in 3 dimensions by
using the simulations. In this chapter, we show the dynamics of the tracer
can exhibits non-trivial behavior even in the ideal gas system and such a
behavior is caused by the correlated collisions. In chapter 4, we analyze the



statistics of a single collision between the tracer and an ideal gas particle by
the theory to describe the results related to the single collision in the chapter
3. In chapter 4, based on the pictures obtained in the chapters above, we
analyze the dynamics of the tracer in ideal gas in 1 dimension by the theory.



Chapter 2

Method of simulation

In this work, we analyze the dynamics of the tracer focusing on the collisions.
The method solving the equation of motion[24, 25] can not strictly detect the
collisions between the particles. Thus, we employ the hard core simulation
methods which is event driven type one developed by Alder[26].

2.1 Simulation setting

We introduce a tracer particle of size o and mass M and N ideal gas particles
of size 0 and mass m into the simulation box with the periodic boundary
conditions in d dimensions. The side length of the simulation box L was
chosen by the number density p so that L and p satisfy the relation L? =
d/2

% rzrgﬂ) <%
dimension. Then, we define the volume of the simulation box L¢ as V.
The initial positions of the tracer and gas particles are uniformly distributed
without overlap between the tracer and gas particles. The initial velocities of
the tracer and gas particles obeys the Maxwell-Boltzmann distribution. We
subtracted the constant vector from the velocities of tracer and gas particles
to realize that the momentum of the system becomes 0 and multiplied the
constant to the all velocities to realize the kinetic energy of the system become
(N +1)dkgT, where kg is the Boltzmann constant and 7" is the temperature.
In this system, the parameters which characterize the system can be reduced
only to M and p by choosing m, ¢ and kgT as units in the thermodynamic
limit (L — oo and N — oo for fixed p). In the simulation, since the analysis
is performed in the finite yet sufficiently large system in which the system
size does not affect the results, the parameters in the simulation is practically
M and p. The system size effect is discussed in the following section.

In our system, the mean free path of the ideal gas particles exceed the

)d, where the second term is the volume of the tracer in d



size of the simulation box. In this case, the tracer and the gas particle in the
mirror image sometimes collide earlier than those in the simulation box. Due
to such a type of the event, the calculation of the dynamics fails if we use
the conventional hard core algorithm[26]. To solve this issue, we modified
the algorithm as below.

1.

Calculate the minimum time when the gas particle in the mirror image
possibly collides ¢/ ... That is, we analyze the max relative speed be-
tween the tracer and ideal gas particle V.., and calculate the minimum

: / _ L—o
time as t,;, = 57—

Find the gas particles which approaches to tracer by using the relation
below.

(R — ’I"Z‘> : (V — ’Ui) <0 (21)

where R and r; are the positions of the tracer and ¢-th gas particle and
V and wv; are the velocities of the tracer and ¢-th gas particle. If the
condition (2.1) is satisfied, the i-th particle possibly collides with the
tracer.

For the gas particle which satisfies the condition (2.1), we test whether
the particle collides with the tracer by the condition below

2
L <rti : %> (2.2)

(%7

where 7r; and v; are the relative position and the velocity between the
tracer and i-th gas particle defined as ry; = 7, — R, vy; = v;— V. Then,
we define the right hand side of the equation (2.2) as b.

. For the gas particle which satisfies the condition (2.2), we calculate the

time when the tracer and i-th gas particle collides ¢; by the following
equation
Lo[ry- vy

t = —— 2 _p2 3 2.3
Vg Vg + (U tz) ( )

and find the gas particle that collides with the tracer in the shortest

. If t/ is smaller than ¢;, evolve the position of all particles for the period

of ¢ and back to the step 2, otherwise go to the next step.



6. Evolve the positions of all particles for the period of t,,;,.

7. Evolve the velocity for the tracer and colliding gas particle by the
following collision rule based on the hard core interaction as

, 2m o
V—V+m+M(v¢—V)-rr (2.4)
2M
v; :'v—m_i_M('vi—V)-ff (2.5)

where V' and V' are the velocities of tracer before and after the col-
lision, v and v’ are the velocities of gas particle before and after the
collision and 7 is the unit vector from the center of tracer to the gas
particle on the collision.

8. Go back to the step 1 and repeat.

We use the data after 1 million collisions occur so that the history of the initial
setting of the simulation does not affect the results. From the simulation
setting, we calculated the dynamics of the tracer in the ideal gas.

2.2 Validity of simulation

In this section, we checked the conservation law related to the classical me-
chanics and the basic property related to the equilibrium statistical mechan-
ics for our simulation in the following subsections.

2.2.1 Conservation law of classical mechanics

In the hard core and event driven type simulation scheme employed in this
work, the velocities of the tracer and gas particles are changed by the collision
conserving the momentum and the kinetic energy. Since the time evolution
of the system is the successive ballistic motion and the velocity changes
between the tracer and gas particles, the momentum and kinetic energy of
the system are not changed for the time evolution. In our system, we set
the initial momentum of the system pgu,,(0) defined by pgum(0) = P(0) +
>, pi(0) as 0 and the initial averaged kinetic energy per particle Eq..(0)
defined by Ea,.(0) = 55 (MV?(0) + 3, mv?(0)) as 1. These values have to
keep the initial value for the time development. To check the conservation
laws, we plot the time evolution of E,..(0) and pg,, in the 3 dimensions in
Figure 2.1. From Figure 2.1, we found that the F,,.(0) decreases and pgym,
fluctuate for the time development, although the variations of quantity are
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Figure 2.1: Time development of the averaged kinetic energy per particle Ej,
and momentum of the system py,,, in 3 dimensions.

rather small compared with the results shown in following chapters. These
changes would be due to the numerical errors and inevitable in the numerical
simulation. Thus, we can say that our simulation satisfies the conservation
law of mechanics in the range of the numerical errors. Also since the changes
of Fuve(0) and pyym, are rather small, these would not affect the results shown
in the following chapters.

2.2.2 Check of basic equilibrium property

In this subsection, we check the velocity distribution of the tracer and the
structure of the gas particles around the tracer. In the equilibrium state, the
velocity distributions of tracer and gas particles obey the Maxwell Boltzmann
distribution as follows,

MV?

PMB<M, V) :Nexp <— 2/{:BT) (26)
2

Prrp(mi, v;) =N exp <—;Z::%) (2.7)

where V' is the velocity of the tracer and v; is the velocity of i-th gas particle.
From the distribution of the tracer described by equation (2.6), we obtain the
distribution of the speed of the tracer V| = V2 + V> + V? in 3 dimensional
system as

3
v M2 MV
— V|2 —

11



We compare the speed distribution of the tracer from the simulation with the
equation (2.8) in figure 2.2. From this figure, the tracer speed in our system

X M=1, p=1
) MB distribution
\ © Simulation

05

0.4

0.3

Paw)

0.2

0.1

0.0 |

Figure 2.2: The velocity distribution of the tracer with the Maxwell Boltz-
mann distribution (MB distribution) in 3 dimensional system.

satisfies the Maxwell Boltzmann distribution.

We also analyzed the radial distribution function around the tracer(RDF).
In general, analytical calculation of RDF for fluids is rather difficult. To cal-
culate the RDF, the various approximations have been employed[27]. Mean-
while, in a few cases, exact expression of RDF can be obtained such as ideal
gas or one-dimensional system cases[28]. Also in our system, the RDF can be
obtained analytically because of the non-interacting nature of gas particles.

To calculate the RDF, we first analyze the partition function of the system
Zn. The Hamiltonian of our system H is

HRV (rh oD = 5o+ S Bt S U(R-r) (29)

where {r;} = 71,72 - vy, {P;} = P1,P2- - PN, P and p; are the momentum
of tracer and i-th ideal gas particle, U is the hard core interaction between
tracer and gas particles defined as

U(r) = {OO (r=3) (2.10)

0 (r>%)

From the Hamiltonian, we can calculate the partition function as follows

Zy, :/drtdridvtdvte_ﬂﬂ (2.11)

12



Since the interaction potential depends only on the distance between tracer
and fluid particle, we can reduce the partition function as follows.

N
Ty — 2T\ (ks T\YE (), (2.12)
M=\ T m r(d+1) |

ok T\Y? [ onkyT\ N ?
:( ]\j > ( mB > QN1 (2.13)

where @)y, is the configuration integral. The partition function(2.12) is the
same as the ideal gas case, although the tracer has the interaction between
the fluid particles. From this partition function, the thermodynamic property
is the same with the ideal gas if the system size is sufficiently large.

The 2-body density distribution p® (R, R + 7;) of the tracer and gas
particle j is

PP (R, 7;) =(5(R— R)3(r; — 7)) (2.14)
1 T
e /5(R—R)6(r] /)
X exp (_5 Z U(R — ﬁ)) dri{dr’} (2.15)
- ! e [AU(R-m)] (216)
v <V N r(g+1)>
- e [-BU ()] (217
V(V‘M%o>
— (1) (2.18)

where 7; is the relative distance between the tracer and j-th gas particle as
r; = |R — r;|. From this, we can obtain pair density p'® between the tracer
and ideal gas particles as

PP () =3 o ry) = G exp [-BU () (2.19)

where r is the distance from the tracer. The radial distribution function can
be obtained by integration of p® by R. Consequently, we have

/ PP (R, 7)AR = pexp (—BU(r)) = pg(r) (2.20)

13
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Figure 2.3: Radial distribution function around the tracer for M = 1 and
p =1 in 3 dimensions.

Thus, we could get g(r) as exp(—SU(r)). We compare this analytical expres-
sion with the simulation results in 3 dimensions in Figure 2.3. In this figure,
we can see the almost complete agreement between the analytical expression
and the simulation result. For other parameters and dimensions, the RDF
satisfies the equilibrium property in a similar way.

From the analysis of the velocity distribution and RDF shown above,
our simulation satisfies the basic equilibrium properties. Therefore, we can
confirm our simulations are performed in the equilibrium state.

2.2.3 Estimation of time where system size affects

In many cases, molecular simulations are performed in the periodic bound-
ary conditions and these conditions cause the undesirable artifacts such
as the nonphysical sound propagation etc. for the long time dynamics of
particles[29]. In our system, because the gas particles do not interact each
other, the sound propagation does not occur. However, the artificial corre-
lation may be induced between the collisions if the tracer collides with the
same gas particle flies beyond the periodic boundaries. Below, we estimate
the characteristic time for such a event.

The number density of the tracer particle p; is p; ~ 1/LP, the relative
mean speed of the tracer and gas particle v;; is about v;; ~ (%)I/Q and
the cross section of the collision between the tracer and gas particle S is
S ~ oP~!. From these value, we can roughly estimate the time scale of
re-collisions of the tracer and the gas particle due to the periodic boundary
condition Tper; as Tpepi ~ (th_)n'O'D _1) ' The free time of the tracer T, 1s about
7 ~ pouyoP 1 and this is about N7'7,.;. This means that the re-collision

14



event due to the periodic boundary condition can occur in the long time scale
where the number of collisions is comparable to the number of gas particles.
Therefore, the undesired re-collision events rarely occur in the short time
scale which is focused in this work if the number of particles is sufficiently
high.

2.3 Analysis methods

The dynamics of the tracer is completely determined by the successive veloc-
ities and time intervals between the collisions. However, we can not find the
characteristic behavior of tracer dynamics by simply looking the raw data
because these data always fluctuate. Therefore, we need to calculate the
some sort of averaged value.

The basic idea characterizing the fluctuating quantity is the time corre-
lation function methods[29] as follows,

C(t) = (A0)B(1)) (2.21)

where A and B are the arbitrary dynamic variables and (- --) indicates the
average for the time or ensemble. In the ergodic and equilibrium state,
the time and the ensemble averages are the same, thus we employ the time
average for calculating the various correlation functions. In general, the
correlation of A(0) and B(t) decreases as t increases, , and it will be decoupled
as below,

C(t) = (AN (B"(t)) = (A0))(B"(0)) (2.22)

where we use the stationary condition in equilibrium. From equation (2.22),
C'(t) approaches to 0 if A and B fluctuate around 0.

The most typical time correlation function characterizing the dynamics of
the tracer is the normalized velocity autocorrelation function (VAC) defined
as

(V(0)- V(1))
ZO (2.23)

This VAC is 1 at the initial time and approaches to 0 at the long time
limit. Since the VAC is directly related to the diffusion of the tracer, it
is an important quantity[29, 14, 15]. Therefore, we analyze the VAC to
characterize the dynamics of the tracer in the ideal gas.
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The Other correlation function appeared in this work is the non-Gaussian
parameter (NGP) defined as

3(ARM(1))

NGP = 5(AR2(t))?

—1 (2.24)
where AR(t) is the displacement of the tracer given as R(t)—R(0). The NGP
can detect the non-Gaussianity of AR(t). The non 0 value of NGP means the
non-Gaussianity nature of AR(t). Rahman used NGP and showed that the
dynamics of the constituent molecules of the argon liquid can not be written
by the Langevin equation [10]. Also, the NGP is widely used to detect the
dynamic heterogeneity of the glassy liquids[30] or the polymer solutions[31]
although the relation between the Gaussianity and heterogeneity is not fully
clear. In this work, we use the NGP to compare our ideal gas system to other
complex systems and Langevin description.
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Chapter 3

Short time dynamics of tracer
in 3 dimensional ideal gas

3.1 Introduction

When we focus on the short time dynamics of the tracer in a fluid, Langevin
description can not be used [10, 11], and we have to consider the individual
collisions of fluid molecules. If the fluid is dilute or has an intermediate
density, the individual collisions are not strongly correlated each other and
the dynamics of the tracer can be described by the Enskog theory which
incorporate the contribution of the fluid structure [14, 15, 32]. In contrast,
for the dense fluid case, the collisions are strongly correlated, and this leads
to the slow relaxation of the tracer motion. In such a case, the dynamics of
the tracer have not been fully understood, despite many simulation works
[32].

The dynamics of the tracer is strongly related to the static structure of
the fluid. The mode-coupling theory can predict the dynamics of the tracer
(or constituent particles) in some dense systems by incorporating the static
correlations[33]. Gotze tested the mode-coupling theory for the super-cooled
liquids and showed that it quantitatively predicts the results of the simu-
lations and experiments[34]. Thus, the mode-coupling theory is the one of
the useful approaches for the tracer dynamics in the dense fluids. However,
the mode-coupling theory can not predict the dynamics of the tracer in the
structureless fluids because the structural information required for the theory
is missing. Frenkel and Maguire[35, 36] analyzed the dynamics of the fluid
composed of the infinitely thin hard rods by using the simulations. This
system does not have any structures, thus the static equilibrium property
is the same as the ideal gas. In this system, they showed that the dynam-
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ics of the rods can be predicted by the Enskog theory when the rods are
dilute. However, the Enskog theory fails for high density case. Such a be-
havior purely originates from the correlated collisions of rods and can not be
predicted by the mode-coupling theory. In addition to the important works
by Frenkel and Maguire mentioned above, various structureless fluids which
have the dynamic correlations have been analyzed by the simulation[37, 38],
theory([39, 40] and experiment[41]. However, the dynamics of the constituent
particles have not been fully understood for high density cases, although the
low and middle density cases are well understood.

As we mentioned above, the difficulty of the dynamics of many body-
systems arises from the dynamic correlations. If we consider the short time
dynamics of the tracer in the fluid, we have to consider the correlated colli-
sions caused by the tracer-fluid and fluid-fluid interactions. To understand
such a complicated problem, it would be informative to consider the system
which does not have the correlated collisions caused by the fluid-fluid interac-
tions. Thus, we analyze the dynamics of the tracer in the ideal gas composed
of the point masses in this work. There is a similar work considering the dy-
namics of the tracer in the fluid in which the fluid particles does not interact
each other by Zwanzig[9]. He considered the tracer tied with many linear
oscillators as the heat bath, and hi solved the tracer dynamics analytically.
This model is instructive for many-body problems, but it does not give any
insights for the correlated collisions of the tracer and fluid particles.

In this chapter, we investigate the dynamics of the tracer in the ideal gas
by using the hard sphere simulations as shown in chapter 2. The construction
of the chapter is as follows. First, we analyze the velocity autocorrelation
functions and non-Gaussianity parameter of the tracer particle by changing
the tracer mass M and number density of the ideal gas p. Although the gas
particles do not have the interaction each other, the non-trivial dynamics of
the tracer is observed. Second, we analyze the dynamics of the tracer by
focusing on the successive collisions between the tracer and gas particles and
identify the origin of the nontrivial dynamics of the tracer.

3.2 Results of the simulations

We show the velocity autocorrelation functions (VAC) of the tracer with
various M and p = 1 in Figure 3.1, together with the theoretical prediction
by so-called Enskog theory|[13].

V() - V(0)) = BIET exp (—ﬁt) (3.1)
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The calculation methods of VAC is shown in section 2.3. The vertical and
horizontal axis are normalized by the kinetic energy (V?2) = 3kgT/M and
the mean free time 7. From figure 3.1(a), the VAC of tracer decays rapidly as
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Figure 3.1: (a)Velocity autocorrelation function (VAC) of the tracer changing
M for fixed number density p = 1.(b)Enlarged view of figure 3.1(a).

the mass of the tracer decreases, and the VAC decays to zero at the time scale
where a single collision occurs for the low mass case M < 1. This behavior
is trivial because the velocity of the light tracer can be changed easily by a
single collision, and this leads to the rapid decay of the velocity correlation
of the tracer. Also, the Enskog theory can reproduce the VAC of tracer for
M =1 and 100. This means that the VAC of tracer is exponential function
and this suggests that the dynamic correlation can be safely ignored. For
the low mass case M = 0.01, although the Enskog theory almost reproduces
the VAC of the tracer, we can see the minor deviation from the theory in
Figure 3.1(b). This suggests that a dynamic correlation occurs even if the
fluid particles do not interact each other.

The non-Gaussian parameter defined in equation(2.24) of the tracer with
various M and fixed p at 1 is shown in figure3.2. We observe the clear peaks
of NGPs for M = 0.01,1 in the short time scale. Yamaguchi and Kimura
[11] analyzed the NGP of the tracer in the hard sphere fluid composed of
the identical particles by using the Monte Carlo simulations and reported
the peak of the NGP of the tracer occur in the short time scale. Our results
of NGP agrees qualitatively with those by Yamaguchi and Kimura. Besides,
we observe that the peak of the NGP decreases as the mass of the tracer in-
creases. This behavior means that the displacement of the tracer approaches
to the Gaussian in the high mass case. For the dynamics of the tracer at
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Figure 3.2: Non Gaussian parameter of the tracer changing M for fixed
number density p =1

the short time scale, we have to consider the collision dynamics and can not
use the Langevin description. However, when the tracer mass is sufficiently
large, the Langevin equation can be theoretically derived from the Boltz-
mann equation into the expansion of the mass ratio [12]. Our simulation
results support this theory and the Langevin equation can be used for the
dynamics of the heavy tracer.

We show the VAC with various p and fixed mass M = 1 in Figure 3.3
with the Enskog theory. From Figure 3.3(a), the curves of VAC are roughly
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Figure 3.3: (a)VAC of tracer changing p for fixed mass M = 1. (b)Enlarged
view of figure 3.3(a).
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the same and the Enskog theory can reproduce these behaviors. However,
for the high density case (p = 100), we observed the minor negative velocity
correlation in the short time scale and this VAC deviates from the Enskog
theory in Figure 3.3(b). In the Enskog theory, since the dynamic correlations
of collisions are not considered, the deviation from the Enskog theory implies
the dynamics correlation can occur even if the fluid particles do not interact
with each other. Although the negative correlation and deviation from the
Enskog theory of the VAC of the hard sphere have been reported [42], these
are not fully understood yet.

We show the NGP of the tracer with the various number density p and
fixed mass M = 1 in Figure 3.4. From Figure 3.3, we observe the peaks
of NGP in the short time scale for all densities. This means that the dis-
placement of the tracer is non Gaussian even when the mass of the tracer is
the same with the gas particles for all number densities. Also, we can find
that the peak of NGP increases when the number density is high (p = 100).
In general, the NGP can show large peaks in various systems such as the
glass[30] or polymer solutions[31] and the origin of the large peaks of the
NGP is considered to be a dynamic heterogeneity of the fluid around the
particle. However, in our system, the fluid does not have the dynamic het-
erogeneity because the fluid does not interact with each other. Thus, the
origin of the increase of the peak of NGP at high densities observed in our
system would be different from those for the glass or polymer solutions.
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0.00 ,I |

102 10
time t

Figure 3.4: NGP of tracer for various p at fixed mass M =1

From the results of the VAC and NGP for the various M and p, we found
that the behavior of the tracer is qualitatively changed by these parameters.
When the mass of the tracer is high, the behavior of the tracer can be repro-
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duced by the Enskog theory and the Langevin equation. However, when the
mass of the tracer is small, the VAC shows a negative peak and NGP shows
positive peak, and such behaviors can not be reproduced by the Enskog the-
ory or the Langevin equation. In the low density cases, the dynamics of the
tracer is consistent with the Enskog theory. However, in the high density
cases (p > 1), the VAC shows the negative peak and NGP shows positive
peak. The origin of such behavior is not the dynamic heterogeneity because
of the ideal gas nature of our system. Thus, we found that the dynamics
of the tracer in ideal gas is not trivial when the mass of the tracer is small
M <1 and number density is high p > 1. In the following analysis, we focus
on such a parameter region.

We show the VAC and NGP in the region of M <1 and p > 1 in Figure
3.5 with the Enskog theory. From this figure, we find the strong negative
peak of VAC for M = 0.01, p = 100, and such a behavior deviates from the
Enskog theory. The peak of the NGP is enhanced for the M = 0.01 and
p = 100 case. Thus, we confirm that the dynamics of the tracer in the region
of the low mass and high number density is non-trivial.
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Figure 3.5: (a) VAC for various M and p in the ranges M < 1 and p > 1.
(b)NGP for the same ranges.
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3.3 Discussions

3.3.1 Single collision

The dynamics of the tracer in our system is the ballistic motion and the
instantly velocity change by the collisions. Thus, it would be reasonable to
focus on the collision dynamics between the tracer and gas particles.

We have found the negative VAC of the tracer occurs when the mass of
the tracer is low M < 1 in figures 3.3 and 3.5(a). Below, we consider the
naive hypothesis for the negative correlations. When the tracer mass is small,
the speed of the tracer is high compared with the gas particles due to the
Maxwell Boltzmann distribution shown in equation (2.6). In this case, the
probability that the tracer has the frontal collisions with the gas particles
increases. Besides, the tracer velocity can be easily changed by the single
collision with a gas particle due to the hard sphere interaction (eq (2.4)) In
this case, the back reflection of the tracer may occur by the single collision.
To check this hypothesis, we calculated the inner product of the velocities
before and after the single collision 7, as

> Vi Via

n= Tyve o (3.2)

We plot this 7, for various M and p from the simulation in Figure 3.6(a).
This figure shows that the 7; does not depends on p. Also, v; approaches
to 1 for large M, and 0 for small M. The behavior of ~, for large M is
consistent with our naive intuition because the velocity of the heavy tracer
is almost not changed by the single collision with a gas. The behavior of
~1 for small M means that the back reflection does not occur by the single
collision. Thus, the our hypothesis above is not acceptable.

Burshtein and Krongauz[23] considered the theoretical model for the dy-
namics of the tracer in the hard sphere fluid. They calculated the VAC of
the tracer by considering the collision process and showed that there is 2
necessary conditions causing the negative VAC if the successive collisions are
independent; (1) the velocity correlation before and after a single collision is
negatively correlated and (2) the distribution of the free time between a col-
lision deviates from the exponential distribution. This theory is constructed
for the tracer in the hard sphere fluid. However, the theory can be applied
for our ideal gas system because the theory does not consider the interction
between the fluid particles explicitly. In our system, the first condition for
the negative VAC is not satisfied as shown above. Then, we consider the
necessary condition (2). We plot the distribution of the free time of the
tracer between the collisions for various M and p in Figure 3.6(b), with the
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Figure 3.6: (a)y; for various M and p. (b)Distribution of the free time of
tracer between collision scaled by mean free time.7

exponential function. This figure shows that the distribution of the free time
is almost exponential for all parameters. Thus, the second condition for the
negative VAC is not satisfied neither.

These discussions of the velocity correlation before and after a single col-
lision and distribution of the free time suggests that the individual collisions
are not independent even if the ideal gas particles do not interact each other.
Therefore, we consider the correlated collisions in the following section. The
theoretical analysis and further discussions of the statistics of the single col-
lision are performed in chapter 4.1.

3.3.2 Correlation of collisions

The VAC of the tracer deviates from Enskog theory when M is low and
p is high in Figure 3.5(a). The Enskog theory considers only the static
correlation such as the structure of the fluids, and it does not consider the
dynamic correlation. Thus, the deviation of VAC from the Enskog theory
means that the dynamic correlation exists even if the fluid is an ideal gas.
Also in the discussion in section 3.3.1, we arrived at the conclusion that the
collisions can be correlated for the case where M < 1 and p > 1. In this
section, we analyze the correlation of collisions.

Taloni et al investigated the dynamics of the hard disk in 2 dimensions by
introducing the correlation functions for the statistical average on collisions
and showed that the correlations averaged by collisions has the similar be-
havior of the correlations averaged by time[22]. However, they analyzed only
the equal mass system in 2D, so thier results would not be directly applicable
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to our system. In the following analysis, we use the quantity introduced by
Taloni et al.

We have analyzed the correlation of the velocities before and after sin-
gle collision by introducing v,. We generalize this quantity to analyze the
correlation of velocities before and after n successive collisions as follows.

Yy = <‘/n 2%)00[[ (33)
<‘/0 >coll
where (- - ). means the statistical average over collisions. To the author’s
best knowledge, this quantity is first introduced by Taloni et al. This quantity
can be obtained in our simulation as follows

_ Zf\il V;l—i-n : ‘/;
= N .
Zz’:l ‘/iz

Although #, is similar to the VAC, the VAC is the average over the time
while ~, is the average over the collision. VAC is affected by the several
multiple collisions, and we can not distinguish the contributions of different
numbers of collisions in the VAC in principle. However 7, can distinguish
the contribution of different numbers of collisions. We show ~,, for various

Tn (3.4)
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Figure 3.7: =, for various M and p in the ranges of M <1 and p > 1.

M and p in the figure 3.7. We observe that ~, is the positive for M = 1.
In contrast, for M = 0.01 and p = 100, 7, becomes negative in n > 3 while
~v1 and vy, are positive. This results suggest that the successive collisions are
correlated when M is low and p is high, and negative velocity correlation
is caused by 3 or more collisions. Taloni et al obtained the similar negative
value of v, for the fluid composed of the identical hard disks in 2D when the
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density of the fluid is high. However, they did not discuss the origin of the
negative correlation of .

We discuss the origin of negative v, which occurs after 3 collisions. For
high density cases where the mean distance between the gas particles is
smaller than the size of the tracer o, the gas particles surrounding the tracer
would effectively form the cage for the tracer. Such a phenomenological pic-
ture is often used to explain the negative VAC in some dense systems such
as the hard sphere fluid[43], Lennard-Jones fluid[44], or granular fluid[45].
However, the cage model is rather phenomenological and does not tell us the
details of the collision dynamics. Also, the cage model does not explain the
reason why -, becomes negative for n > 3. Thus, we do not employ the cage
picture to study the dynamics in our system.
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Figure 3.8: 42, v¢ and 7, for M = 0.01 and p = 100.

Here, we consider the origin for the correlated collisions. The fluid parti-
cles do not interact with each other, and this leads to the uniform distribution
of the position as shown in fig 2.3. Thus, when all the gas particles succes-
sively colliding the tracer are different, the dynamics of the tracer would be
Markovian. In such a case, the distribution of the free time is almost ex-
ponential function and negative VAC does not occur as discussed in section
3.3.1. Therefore, we naively think that the correlated collision is caused by
the collisions with the same gas particles. To confirm this hypothesis, we an-
alyze 7, in detail. We decompose 7, into 2 parts; self 47 and distinct parts
7%, The former is the contribution in the case where the first collision and
n-th collision are caused by the same particle. The latter is the contribution
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of collisions by different particles. The explicit expressions of 2 and ¢ is

Vo = (3.5)
s _Zi]il ‘/i+n‘/i5Ki+1Ki+n
f}/n - N 2 (36)
Ziil ‘/Z
’Yd :Zi]\il ‘/i-l-n‘/i(l - 5Ki+1Ki+n) (3 7)
’ DA

where K; is the label of the particle i and dg,x,,, is the Kronecker delta.
The contributions of 75 and ¢ are shown in Figure 3.8. From this figure, v2
is 0 for n = 1. This is obvious from the definition of v¢ (eq (3.7)). Also, 72
is 0 for n = 2. This is trivial from the collision rule (eq (2.4)), namely the
tracer leaves away from a gas particle after a collision, so the tracer can not
collide with the gas particle of the first collision in the second collision. The
most important feature in the figure 3.8 is the negative value of v; for n > 3.
This behavior indicates that the negative value of v, is contributed only by
;. Namely, we can say that the collision with the same gas particles is the
origin of the negative ;. From the discussions above, we can understand
why 7, shows negative value for n > 3. The correlated collisions can occur
only by the collisions with the same gas particles in our system. To collide
the same gas particles, 2 collisions are not sufficient and 3 or more collisions
are required.

3.3.3 Comparison with other simulations

Our system shows complex behavior even if the fluid is composed of point
masses which do not interact each other. In this subsection, we compare such
behavior with other works.

Mizuta et al investigated the dynamics of the fullerene particles in the
Lennard-Jones (LJ) fluid and Weeks-Chandler-Andersen (WCA) fluid with
various fullerenes with different size [46]. They showed that the dynamics of
the fullerenes in both fluids can be described by the Enskog theory only in
the very short time scale. In our result of Figure 3.5(a), the Enskog theory
can describe the dynamics of the tracer in the very short time scale where
only a single collision occurs, although the deviation is observed after the
very short time scale for small M and high p case. These results imply that
the correlated collisions do not affect the dynamics of the tracer in the very
short time scale regardless of the existence of the interactions between the
fluid particles.

Frenkel and Maguire investigated the dynamics of the fluid composed
of the infinitely thin hard rods by using the event driven type simulations.
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They showed that the dynamics of the hard rods can be described by the
Enskog theory for low density case where the collisions are uncorrelated. In
contrast, the dynamics of the rods deviate from the Enskog theory for high
density case because of the dynamic correlation of the rods. In such a high
density regime, Frenkel and Magurire suggested that dynamics of the rods has
the analogy with the stiff polymer and the phenomenological scaling of the
diffusion constant for the stiff polymers constructed by Doi and Edwards[47]
can describe the dynamics of the rods in the long time diffusive regime.
Hofling et al investigated the dynamics of a infinitely thin hard needle in the
fixed obstacles in 2 dimensions and showed that the diffusion coefficient of
the needle has the same scaling relation with the stiff polymers[37]. Since
our system does not treat the rod, we can not expect the analogy to the
polymeric fluids. However, the dynamics in the ideal gas in the long time
regime may be described by the simple phenomenological scaling theory like
the idealized rods models. For the short time scale dynamics, in contrast, we
would have to consider the complex collision dynamics.
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Chapter 4

Statistics of single collision in
arbitrary dimension

4.1 Introduction

In the previous chapter, we analyzed the dynamics of the tracer in an ideal
gas in 3 dimensions and found that the VAC of the tracer shows the non-
trivial behavior for low M and high p case. To understand such behavior, we
analyzed the individual collisions and found that the correlated collisions can
be caused after 3 or more correlated collisions. For single collision case, the
statistics of collision such as the correlation of the velocity before and after
single collision ~; and distribution of the free time P(7) is not affected by
the correlated collisions as discussed in subsection 3.3.1. Even in such a case,
the non-intuitive behavior was observed for 7, for the light tracer case. In
this subsection, we consider the statistics of the single collision by the theory
and analytically calculate ;. Before we proceed to the detailed analysis, we
introduce works related to our work.

Herman and Alder analyzed the dynamics of the tracer in a hard sphere
system and showed that the velocity autocorrelation function of the tracer
has the negative peak in a short time scale when the tracer mass is smaller
than the surrounding fluid particles[32]. They simply discussed that the
negative peak originates from the small momentum of the tracer. However,
our simulation result in figure 3.6(a) does not support their claim although
our system can not be directly compared with their system simply.

The statistics of the single collision has been studied in many works. The
distribution of the free path and time had been thought to be exponential
by a rough estimation [48]. Alder developed the hard sphere simulation and
showed the distribution of free path is roughly exponential for a widely range
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of number densities including those for solids[49, 50]. However, in a recent
work, the distribution of the free path and time are shown to be exactly the
exponential even in the low density where the molecular chaos is expected
[51, 22, 52]. Visco et. al. performed theoretical analysis by considering the
transition rate from the pre-collision velocity to the post-collision velocity
and showed that the non-exponential distribution of free path and time are
due to the existence of the velocity distribution[52]. Strictly speaking, the
conditional distribution that the tracer has a certain velocity is exponential,
but the integration of the conditional probability over the velocity leads to a
deviation from exponential. Although the theory by Visco et al. is precise,
they performed calculation only for the case of the equal mass. Therefore,
their theory can not be applied to our simulation results as it is.

In this chapter, we perform the theoretical analysis for the single collision
statistics for arbitrary tracer masses. The derivation is different from the
work by Visco et al. [52]. In our work, we first analyze the probability of
collision occurring int ~t+dt, * ~*+dr¥ , v ~v+dvand V ~V +dV,
P(t,7,v, V), where t is the colliding time, 7 is the unit vector directed from
center of tracer and it of colliding gas particle on collision, v is the velocity
of the colliding gas particle and V is the velocity of tracer. This probability
has the all information of the single collision statistics of the tracer. From
P(t,7,v,V), we calculate the 7, and P(t). For the discussion of the y; and
analysis of the one dimensional system in chapter 5, we perform the analysis
of the single collision statistics in arbitrary dimensions.

4.2 Theoretical analysis

4.2.1 Single collision statistics

We analyze the probability of the first collision occurring in ¢ ~ ¢ + dt,
F~F+df ,v~v+dvand V ~V +dV, P(t,# v, V). This theory is
essentially in the same manner with the work by Visco et. al[52].

First, we consider the probability that the tracer velocity V is sampled
after a collision, P,(V'). This probability can be obtained by considering the
collision frequency for the relative velocity of tracer and a gas particle.

V)" (dg)1 ~ [dv [dF(v— V) #Pyp(m,v)Pyp(M,V) (1)
p(2)" [dV [dv [dP(v— V) PPyp(m,v)Pyp(M,V)
:F(V)Jj\MB(V) (42)
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where F'(V') is the collision frequency under the condition of the tracer having
velocity V' and A is the collision frequency. They are defined as

F(V) =p (%)dl/dv/df(v — V) #Pyg(m,v)

A= / AV F(V)Pyp(M, V) (4.3)

The analytical forms of F/(V') in 1 and 3 dimensions are

F(V) = pr(5)” K\/‘v+

L v or
v > erf(v/aV) + —=e (for 3d) (4.4)

2 /av T

—aV?
F(V) —% VaVerf(v/aV) + N ] (for 1d) (4.5)
where « is defined as a = 57%=. Then, we calculate the probability of first

2%pT
collision occurring in t ~ t+dt, v ~ v+dv, 7 ~ d + d# under the condition

that the tracer having velocity V', P(t,#,v|V'). This probability is expressed
as the product of 2 terms. One is the probability that the first collision occurs
int~ dt and * ~ 7 + dr , ignoring the particle having velocity other than
v, P'(t,v|V).

P'(t,#,v|V)dvdtd?

0 (D) (0= V) #Pyp(0)dvds

2
X exp (—p (5) (w—V). fﬁPMB(v)dvdft) dt
N
—p (5) (v — V) - # Py p(v)dvdtd? (4.6)

where we can regard the exponent in (4.6) as 0 because it is the infinitesimal
value. Another is the probability that the any collisions do not occur in time
0 ~ t for the gas particle having velocity other than v, P”(t|V).

i V)’F.t
P"(t|V) = 1—/d’u/dr V

XPMB(’U/) (1 — (5(1)/ — v)dv)}N (1= Parp(m,v)dv)

= (1 - %)N (4.7)
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where we have ignored the infinitesimal quantities. Then, we consider the
thermodynamic limit (N — oo) and obtain the following equation.

PV = <1 _ %) = exp(—F(V)t) (4.8)

P(t,v|V) is the product of P'(¢t,7,v|V) and P"(t|V), we get

P(t,#,v|V)dvdtd?
=pa® (v — V) - #Pyp(m, v) exp(—F(V)t)dvdtd? (4.9)

From this, we get P(t,#,v,V) as

P(t,#,v, V)dvdtdidV

:F(V>iMB(V)pad—1(,v V) p
X Pyp(m,v) exp(—F(V)t)dvdtdidV (4.10)

the expression (4.10) satisfies the condition of normalization as

/dt/dv/dV/dfP(t,ff',v,V) _1 (4.11)

P(t,#,v,V) has the all information of the single collision statistics of the
tracer.

If we select the coordinate so that the relative velocity v — V' is parallel
to eg with e; being the i-th Euclidean basis set vector (i = 1,2, ---d), we can
reduce the equation (4.10) in the polar coordinate as

P(t,#,v,V)dvdtdrdV

:F(V)JZMB(V) pa®v — V| cos 6,
X Pyrp(m,v) exp(—F(V)t)dvdtdidV (4.12)
where
71 = sin? 26, sin% 36y - - - sin 0y_odh1dbs - - - dBy_4 (4.13)
(0<60, <m/2,0<6y,03,- ,040<m,0<0;1<2m) (4.14)

4.2.2 Free time analysis

In this subsection, we calculate the free time of the tracer between a collision
P(7). We can obtain P(t) from P(t,7,v, V) (eq(4.10)) by integrating v, V'
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and 7. The integral of P(t,7,v, V) over v and # is

P(t, V) /dv/d'rP (t,7,v,V) (4.15)

_ PP ng(M V) exp(— F(V)1) (4.16)

This expression is equivalent to the result by Visco et al.[52] for M = m.

The integral of P(t, V') over V is complex, thus we consider the low and
high M limit. For the large M case, the tracer speed is small compared with
the gas particles due to the nature of the Maxwell-Boltzmann distribution.
Thus, in this case, F'(V') can be reduced to

i3 pa
F(V) :{ e e

oty (10 (4.17)

This equation shows that the collision frequency becomes independent of the
M of the tracer for high M case. From the reduced forms of F'(V) in the
large M limit, we obtain the analytical form of the free time distributions in
one dimension and three dimensions as

P(t)dt — / AV P(t, V)t

_ {SHS eXp(—SHgt)dt (3d)

sg1exp(—smt)dt (1d) (4.18)

. 1 _1 .1 1
where s3p is 2m2pa?a~2 and s;y is 7 2pa~2. For the small M case, the

tracer speed is much higher than those of the gas particles. In this case.
F(V) can be reduced to

F(V) =pra®|V| (3d) (4.19)
F(V) =plV] (1d) (4.20)
This relation indicates that the collision frequency becomes independent of
the velocities of the gas particles. This is natural because the ideal gas

behaves like fixed obstacles for the light tracer. From the reduced form of
F (V') at the small M limit, we obtain the analytical forms of the free time
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distribution in one dimension and three dimensions as

P(t)dt
_ / AV P(t, V)dt

2513 |2 (3 +3s2at” + siyt?) eboTerfe(spat) — spat (5 + 8%3]52)} (34)

B 2511 72 (% + 32L1t2) 63%1t2erfc(sL1t) - sth] (1d)
(4.21)
1 1
where s73 is ”7;—“2 (ZIETV and sy 1s ’23 (2$T)2.

4.2.3 Velocity correlation analysis

From the expression (4.10), we can obtain the probability that the collision
occurs in v ~v+dv, V ~ V +dV and + ~ 7 + d7© by the integrating it
over t as follows.

P(#,0,V) = / dtP(t, 7,0, V) (4.22)

_p (2)" (v-V) .Nj\MB(m,v)PMB(M, V) (4.23)

From this probability, we can calculate 7; introduced in section 3.3.1 as
follows.

o <V : Vl)coll
<V2>coll

Here, (- - ). denotes the statistical average over the collisions, namely,

(- Deot Z/df/dv/dV(---)P(f',v,V) (4.25)

If the velocities before and after a single collision are negatively correlated,
~v1 shows negative value. The explicit form of v, is

B [d# [dv [dV(V - V')P(#,v,V)
N AR [dv [dVVEP(#, 0, V)
We can easily calculate integrals of the equation(4.26) by using the distribu-
tions for the velocity of the center of mass and the relative velocity, as

(4.24)

(4.26)

_Md+m@d-3) dm
NTMd+md+1)  ~ Md+m(d+1)
4
—1- 4.27
M*d+ (d+1) (4:27)
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where M* is the dimensionless tracer mass. From this expression, vy, mono-
tonically increases with M* and asymptotically reaches to 1 for M > 1 in
all dimensions. However, v; depends on d strongly when M < 1. Further
discussions are shown in the following section.

4.3 Discussions

4.3.1 Test of the theoretical results

In this subsection, we compare the theoretical results with the simulation
results. Direct evaluation of P(t,#,v,V) from the simulation is difficult
because P(t,#,v,V') has the 3d(= 1+ d — 1+ d + d) variables, and it leads
to the lack of the statistical samples. Thus, we indirectly test the theoretical
results by comparing integrated forms of the free time distribution ( equation
(4.18) and (4.21) ) and ¥, ( equation (4.26) ).

We compare the theoretical results of the free time distributions at the
high (equation (4.18)) and the small (equation (4.21)) mass limits with the
simulation results for dilute (p = 0.01) and 3 dimensional case in Figure 4.1.
In Figure 4.1, we scaled the horizontal and vertical axis by sy3 and sp3. From
Figure 4.1, the expression (4.18) and (4.21) agree with the simulation results
at the high and low mass limit.

P(t)/s3

t*s3

Figure 4.1: Free time distributions of the theoretical results for large mass
case (a) (eq. (4.18)) and small mass case (b) (eq (4.21)) in p = 0.01, together
with the simulation results. Figures(a) and (b) are scaled by sy3 and sp3

When the ideal gas is dense, the collisions of tracer and ideal gas particles
are correlated as shown in subsection 3.3.2. In such a case, the theory of single
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Figure 4.2: Free time distributions of the theoretical results for large mass
case (a) (eq. (4.18)) and small mass case (b) (eq (4.21)) in p = 100, together
with the simulation results. Figures(a) and (b) are scaled by sy3 and sp3.

collision derived in section 4.2 would not be simply justified because the
theory assumes the Markovian process. Thus, we need to test the theoretical
results for high density case. We show the theoretical results of the free time
distribution at the high mass (equation (4.18)) and low mass (eq. (4.21))
limits with the simulation results in figure 4.2. The horizontal and vertical
axis is scaled by sy3 and sp3. From Figure 4.2, the theoretical results agree
well with the simulation results at the high and low mass limits even if the
ideal gas is dense.

Here, we test the theoretical results of 7, (equation (4.27)) by comparing
them with the simulation results. We show the M dependencies of ~ for
1,2,3,4 and 10 dimensions from the theoretical results with the simulation
results for 1,2, 3 and 4 dimensions in Figure 4.3. From the fig 4.3, the theory
agrees well with the simulation results.

From the comparison of the theory and simulation results above, we con-
clude that the theory works for our ideal gas systems even if the fluid is
dense.

4.3.2 Transformation to the equilibrium probability

The probability of the single collision (equation (4.9)) is the probability sam-
pled from the state immediately after a collision. Thus, this probability is
slightly different from the probability in the equilibrium state. To get the
probability in equilibrium state, the probability should be sampled from the
arbitrary time, and such a probability can be obtained by the method of
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Figure 4.3: M dependencies of v in various dimensions from the theoretical
results (eq.(4.27)), together with the simulation results

renewal process as follows.

We consider the situation where the tracer has the successive collisions
with the gas particles at t_ and ¢t. The diagram of such a event is shown in
Figure 4.4.

u
w
@ | —9—
t- 0] t

Figure 4.4: Diagram of single collision.

The probability corresponds to this diagram is

Pt —t_, 7, u, Vy)dudt_dtdidV,

X Pyp(m,uw)exp(—F(Vp)(t — t_))dudt_dtdrdV, (4.28)

where we have multiplied the probability where the collision occurs at time
t_. Then, we integrate the time ¢_ from —oo to 0 and obtain the single
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collision probability sampled from the equilibrium state as

0
P.,(t, 7, u, V) = / P(t—t_,7,u, Vy)dt_

—00

=paP " u — V) - #Pyg(m, w) Py g(M, Vy) exp(—F(Vy)t) (4.29)

Thus, the single collision probabilities sampled from the state immediately
after collision and the state in equilibrium are slightly different.

4.3.3 Velocity correlation before and after single colli-
sion v,

From Figure 4.3, the ; monotonically increases and approaches to 1 at the
heavy tracer limit (M* > 1) in arbitrary dimensions. This behavior is trivial
because the velocity of the heavy tracer is almost unchanged only by the
single collision with a gas particle This intuitive description can be justified
by the rough scaling argument for the equation(2.4), namely |v| oc m~1/2
and |V| oc M~Y2 from the Maxwell-Boltzmann distributions, and reduce to
the relation (2.4) to V' ~ V. Then, we can obtain the v, for M > 1 as
v >~ 1.

Also, From Figure 4.3, we can see the strong d dependencies of 7 for a
light tracer (M* < 1). Only in 1 or 2 dimensions, 7; becomes the negative,
whereas 7y; are positive in three or higher dimensions. To understand the
origin of the dimension dependencies of 7, we consider the limit of the small
mass M < 1. In this case, equation (2.4) reduces to

V'~V —2V . i (4.30)
Then, the inner product of V' and V' becomes
V.-V ~V?*1—2cosb) (4.31)

This equation shows that the part of the inner product of the velocity in
(4.27) switches the sign at theta; = m/4 and is independent of the dimensions.
This implies that the term of the probability in equation(4.26) depends on
the dimensions. The equation (4.31) of the equation (4.27) to

_Jdi [ dv [AVVE(1 — 2cos01)P(7,v, V)

~ 4.32
n [d# [dv [ dVV2P(#,v,V) (4.32)

We can integrate the degrees of freedom other than #; and obtain
" =~ / dfy(1 —2cos?0;)(d — 1) cos § sin™ 2 ;. (4.33)
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From this, we can say that the dimension dependent of ~; for M* < 1 is due
to the distribution of the direction vector on a collision.

From the calculation above, we obtain the reduced forms of the inner
product of the velocities before and after single collision V' - V' as §(0,) =
1—2cos#; and the probability occurring such collision P(r,v, V') as P(0;) =
(d — 1) cos 6 sin®™ 26, in the small mass limit (M < 1). We can obtain
the physical picture of the single collision in small mass limit precisely by
visualizing them. We plot £(#;) and P(#,) for 1,2,3,4 and 10 dimensions
in Figure 4.5. From Figure4.5(a), 8(#;) does not depend on the dimensions

and monotonically increases with #; and reaches to 1 at 6; = 7. The sign
of 3(61) changes at ¢, = 7. This is intuitive behavior because the collision

at high angle is just like the grazing collision and the velocity is almost
unchanged by such a collision. From the figure4.5(b), we observe that the
distribution shifts towards the high angle by the dimension of the system
increases. This indicate that the probability of the grazing collision increases
with the increase of the dimensions. This is the reason why the 7, increases
with the increase of the dimension in the small mass limit. In 3 dimensions,
the contributions of the grazing collision and back reflection to +; are the
same and this leads to 7; = 0 in the small mass limit.

20F

Dimension d

0.000 0.785 1.570

Figure 4.5: §(0;) and P(6,)

4.3.4 Relation to other system

In this subsection, we mention the relation of the analysis of the single col-
lision above to other systems. Herman and Alder showed that the VAC of
the light tracer in hard sphere fluids shows the negative peak in 3 dimension
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and explained the origin of such a behavior is simply due to the small mo-
mentum of the tracer[32]. However, in our analysis of ; in subsection 4.3.3,
we showed that the negative correlation can not be occurred by the single
collision in 3 dimensional system. Although our analysis did not consider
the structure of the fluid, our analysis suggests that the negative correlation
of the tracer velocity in 3 dimensional system is caused by the correlated
collisions.

In our theory, we did not consider the static structure of the gas. This is
justified only in our simulation because of the non-interacting nature of the
ideal gas. Actually, the RDF does not have any structure as shown in Figure
2.3. However, in the general systems where the fluid particles interact with
each other and static structure exists, we have to consider the complicated
structure for the single collision statistics. Actually, Burshtein and Krongauz
studied the negative velocity correlation of the hard sphere fluid from the
viewpoint of the collisions and pointed out that the fluid structure affects the
distribution of the direction vector between the tracer and a gas particle on a
collision[23]. Thus, further theoretical analyses involving the static structure
is required to construct the theory for the system having the interaction
between the fluid particles.

We derived the single collision statistics of the hard core interaction sys-
tems. This theory would be generalized to some system in which the 2-body
collision is well defined. For instance, the single collision statistics for the
systems composed of the short-ranged potential such as the WCA potential
would be able to constructed. However, if the system is composed of the par-
ticles having long-ranged potential, we can not construct the single collision
statistics because we can not define the collision well in such a system.
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Chapter 5

Short time dynamics of tracer
in 1 dimensional gas

5.1 Introduction

In Chapter 3.1, we found that the dynamics of the tracer shows the complex
behavior even if the fluid is an ideal gas. Such dynamics would be difficult to
express analytically. One of the difficulties is the geometry of the correlated
collisions in 3 dimensions. If the system is in 1 dimension, the geometry is
rather simple than the higher dimensional systems because the angle does not
exist in 1 dimension. Thus, the dynamics of the tracer in the 1 dimensional
system is relatively easy compared with higher dimensional systems.

The 1 dimensional system has been studied by many researchers in sta-
tistical mechanics because of its simplicity and the analytic results of the 1
dimensional system are informative for systems in higher dimensions. The
one dimensional Ising model would be the most famous example in the sta-
tistical mechanics. Also in the field of the classical fluid, the one dimensional
systems have been extensively investigated. For instance, the structure of the
one dimensional fluid composed of the identical hard rods have been exactly
solved[28].

For the dynamics of the one dimensional system, the analytical expres-
sions have been obtained in the limited cases. The dynamics of a one di-
mensional fluid composed of the point particles have been analytically solved
only for the case where the mass of all the fluid particles are equal and the
system is infinite by Jepson[53], Lebowitz and Percus [54, 55]. Also for the
periodic boundary case, the dynamics is solvable[56]. In the equal mass case,
the velocity of particles is simply exchanged by a collision with a neighboring
particles, and the theory utilizes this properly. In contrast, when the masses
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of the particles are not equal, the velocity is not simply exchanged by a colli-
sion. In such a case, the analytical expression of the dynamics have not been
analytically obtained.

The dynamics of the tracer having the different mass from those of the
fluid particles in one dimensional system is qualitatively different from the
equal mass case. Roy et al showed that the function of the decay of the
VAC is changed from ¢t =3 to — In?t. Marro and Masolovert reported that the
power of the VAC decay changes by varying the mass ratio from 1, although
their functional form is different from the results by Roy et al. Anyway, such
changes of the VAC decay by mass implies that the dynamics of the equal
mass case is special.

In this chapter, we focus on the short time dynamics of the tracer in
the 1 dimensional ideal gas. In the 1 dimensional system, whether the fluid
particles interact with each other does not affect the dynamics of the tracer.
This is because the velocities of fluid particles simply exchange by a collision
with the neighboring particle and the tracer does not feel such an event.
Therefore, we consider the situation where the fluid particles do not interact
with each other for simplicity. Such a system would be compared with the 3
dimensional ideal gas system analyzed in the chapter 3.1.

Before the detail analysis, we briefly introduce the 1 dimensional system
here. In a 1 dimensional hard sphere system, the volumes of the tracer and
gas do not affect the dynamics of the tracer although affects the structure
strongly. Therefore, we treat the all particles as the point masses. In such a
reason, the characteristic length scale of the system is only the mean distance
L between the particles in an infinite system. Therefore, this system is
characterized only by mass of the tracer M in dimensionless units in mean
distance L, kinetic energy kg7 and mass of the gas m.

5.2 Results of simulations

We map the time evolution of the position of the tracer and ideal gas particles
to the space-time plain in Figure 5.1 for the same, heavy and light tracer
cases. The black curve and points are the trajectory and collision times of
the tracer. The red and other color curves are the trajectories of the gas
particles. To distinguish each curves of the gas particles, some curves are
high lighted. From Figure 5.1(a), we can see that the velocities of tracer are
fully exchanged by the collision with gas particles only for M* = 1. Such a
behavior makes the dynamics of the tracer simple, and this enables to the
analytical solution for the dynamics [53, 54, 55]. In contrast, for the heavy
tracer case (M* = 100), the tracer moves slowly compared with surrounding
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gas particles and tracer velocity is almost unchanged in a single collision. In
this case, the event that the tracer collides with the same gas particle hardly
occurs and collisions would be almost independent. For the light tracer case
M = 0.01, the behavior is rather different from the heavy tracer case. In this
case, the tracer moves faster than the surrounding gas particles and the tracer
velocity is easily changed by a single collision with a gas particle. We can
observe the back reflections by the single collision and such behavior can be
reproduced by the theoretical analysis in chapter 4.1. The most characteristic
behavior in Figure 5.1(c) is the repeated collisions with the same gas particle.
The tracer reciprocates between the two closest gas particles several times.
In such a case, we can say that the collisions are strongly correlated.

Position

time

N VTN et T
ol /s

w0
time

Position

Position

time

Figure 5.1: The space-time diagram of the tracer and surrounding gas parti-
cles for M =1, M =100 and M = 0.01 case.

To characterize the dynamics of the tracer in 1 dimension, we analyze the
VAC of tracer for various masses and plotted the simulation results in Figure
5.2. In figure 5.2, we observe that the decay rates of the VAC decreases as
the mass of the tracer increases. This is trivial because the collision rate is
low and the velocity change by collision is small in the heavy tracer case,
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VAC

Figure 5.2: VAC of tracer in 1dimension for various M.

and this directly leads to the slow decay of the VAC. The most important
feature in Figure 5.2 is the shape of the VAC. For the heavy tracer case
(M > 1), the VAC shows monotonic decay and such a behavior is consistent
with the picture of the independent collision as shown in Figure 5.1. In
contrast, for the light tracer case M < 1, the VAC shows a negative peak in
the short time scale and the negative peak increases as M decreases. Such a
behavior implies that the collisions are correlated and this is consistent with
the picture in Figure 5.1(c)

5.3 Theoretical analysis

In section 5.2, we analyzed the dynamics of the tracer and found that the
dynamics is qualitatively changed by the tracer mass. For the heavy tracer
case, the collisions are independent and VAC shows the simple decay. In
contrast, for the light tracer case, the collisions are strongly correlated and
VAC shows a negative peak in the short time scale. In this section, we
theoretically analyze the VAC in the heavy and light limits.

5.3.1 Case for heavy tracer

When the tracer mass is large, the collisions are not correlated as shown in
Figure 5.1. In such a case, the dynamics is governed only by the statistics of
the single collision. In this subsection, we shows the VAC of the heavy tracer
from the statistics of the single collision by applying the theoretical methods
of Lindenberg[21] introduced in section 1.4.
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The dynamics of the tracer is composed of the ballistic free motions and
velocity changes by the collision with the gas particles. We describe such
dynamics as the diagram shown in Figure 5.3. This diagram describes the
dynamics with n-collisions. The tracer velocity V; is sampled from the state
just after a collision at t = t_ and the collision with the gas particle having
velocity u; at time t; occurs. The collision times satisfy ¢t < 0 < #; <
g <+ <ty o <t, <t <ty We can describe the probability density

u1 uz2 Un-1 Un U+

VO * * ¢ ¢
*—f—o—0 - -¢—0 |0

t- O t t2 th-1 tn t t+

Figure 5.3: Diagram of the dynamics of tracer for n-th collisions.

corresponding to the diagram with n-collisions as
P(qu, t+7 Un, tna Un—1, tnfla c, U, t27 u, tl? Vb? t,) (51)

The collisions are statistically independent for the heavy tracer case and this
safely leads to the Markovian approximation:

Plug, 4 [Vo) P(tn, tn| V1) -+ Plug, ta2| V1) P(ur, t4Vo) Pu(Vo) (5.2)

where P,(Vj) is the probability of the tracer velocity V' sampled from the
state just after a collision and is given by equation (4.2). P(u,t|V) is the
conditional probability that the tracer collides with the gas particle having
velocity u on time ¢ under the condition where the tracer has velocity V' and
is given by equation(4.9). The explicit expressions for P,(Vy) and P(u,t|V)
are

py(v) =) (5.9
P(u,t|V) =plu — V|Pyp(u)exp (—F(V)t) (5.4)

where A is the average collision frequency. F(V') is one under conditional
collision frequency for the tracer with velocity V.
The VAC can be expanded into the number of collisions:

R = o VOV, (5.5)
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where (V(0)V (t)), is the VAC with n-collisions. The explicit expression of
VOV (#))n is

V()V(0))n

00 t tn t3 t 0
/du+/dun- /dug/dul/d%%

tn,U+|V t _tn laun|Vn 1)
P(tg—tmu?)le) (t2 — t1, uz|V1) P (tl—t—vul\Vo) (Vo) (5.6)

where V,, is the tracer velocity after the n-th collision. From the collision rule
of equation (2.4), V,, is rewritten as

Vo=p"Vo+ Y pqu; (5.7)
i=1
where p = %;z and ¢ = M_Tm

When the tracer mass is sufficiently large M* > 1, F/(V') of equation (4.5)
reduces to —£&, and this gives simpler expression of F,(Vp) and P(u,t[V) as
follows.

P,(V)=Pyp(V) (5.8)

Plu,1]V) =plul Pags (u) exp <‘¢%t) (5.9)

We substitute the reduced form of probability (equation (5.8) and (5.9)) into
equation (5.6), to have

(VOV(0)n

0o t tn t3 to 0
/du+/dun /duQ/dul/dVOVg

><p”+1IU+Hun| IU2HU1|€ f”t

t3
/dt/ oy - / dtQ/ dt,
X /dun---/dUQ/dul/d%(%Vn)

X p" ] -+ Jualluale” Vo= Puy) -+ Plus) Plur) Paris (Vo) (5.11)
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We can reduce the odd function term of u; in V,,, then

V&)V (0))n

t tn t3 to
:pn dtn/ dtn—l c / dtg/ dtl
0 0 0 0
X dun---/dm/alul/CZVOVO2

X p"un] -+« us|[ur]e” Vo= P () - Puz) P(wn) Pasp (Vo) (5.12)

We can calculate all integrals as follows

vovon, =5 () ¢

The VAC can be obtained by taking the sum of all term (V' (¢)V(0)),, as

t

By
3

/{BT _M2mmit k’BT —ﬁ 2y
(VEVO) = 3V (V(0), = =y o=t = Fpemars Vi

For the large mass limit M* — oo, we can reduce the VAC as

. kBTe_Q*i\/ﬁt

(V(6)V(0)) s (5.13)

5.3.2 Case for light tracer

In the short time scale, the tracer has the repeated collisions with the same
gas particles as shown in Figure 5.1. In such a case, the neighboring gas
particles to the tracer behave as fixed walls. The image of this model is
shown in Figure 5.4 where ¢ is the time, X and V is the initial position and

I\ 0O L

V
X

0

Figure 5.4: Theoretical model for dynamics of light tracer in short time scale.

velocity of the tracer sampled from the equilibrium distribution and L is the
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distance between the fixed walls which mimic the neighboring gas particles to
the tracer. Some distributions in this case are well defined by the equilibrium
distributions. The position of the tracer is uniformly distributed in the walls
and the velocity of the tracer is given by the Maxwell-Boltzmann distribution.
The distribution of the distance between the neighboring particles is the
exponential distribution, but the distribution of the distance between the
walls is the Gamma distribution. This is because the tracer is confined
between the walls, and the distance between the walls are the sum of the
neighboring distances. The explicit expression of these distributions are

P(X) =+ (5.14)
P(V) = (27:1:3T) : exp (— ;‘ZX;) (5.15)
P(L) :é exp (_%) (5.16)

where L is the mean distance between the walls. Then, we assume the simple
collision rule. The tracer velocity is changed by the collision with the wall.
The tracer velocity is reversed if the walls are fixed. In such a situation, we
can calculate the VAC under the condition where the initial tracer position,
velocity and distance between the walls are X,V and L as

(VOV(0)xve = V(1) (5.17)

where |---] is the floor function. We can obtain the VAC by taking the
statistical averages for X,V and L. This model would be justified when we
consider the short time scale and the tracer mass is much smaller than the
gas particle because the tracer speeds are smaller than that of tracer and
they are almost unchanged by collisions with the tracer in such a case.

We take the average of (5.17) over X.

I.Vtz—XJ

VOV Oy = [(VOVO)xey PX)IX (5.15)
1 L 2 I_Vt+XJ
—= Vi-1)lladx (5.19)
L J
¢ Vit 2Vt
=V2(—lr) (142 =] - 2= 2
V=D e (12— 7 (5.20)
This is the even function of V', so we can change V by |V| as
¢ Vit 21Vt
VOV (O)ny =VA(-1LT <1 +2 {%J — %) (5.21)
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Then, we take the average of (5.20) over L.

VOV Oy = [ (VEOVO)wrPLYL (522
:/Ooo V(-1 <1 +2 V‘gtJ - y)
x é exp (-%) dL (5.23)
We introduce a variable transform from L to | = £,
(VOVO)v (5.24)
_ /OOO V2 (1)L (1 +92 WL“J 2%“) Lexp (—1) dI (5.25)

:/OOOW(_ )L (1+2 W'J 2|lo“)z “tdl (5.26)

where we defined a = % Then, we divide the integral over [ into integrals
over partial domains as,

(VOV(0)w

) lo]

:V2§(_1)k/+l (I + 2Kl — 2]al)e (5.27)
0o _ ol _ el

=23 (—1)H(L+ 2k) (e—ll%—e—‘%“') — (=1)¥|a (ZH +€k )
. (5.28)

:v2i(—1)k(1 +2k) (e — 7)) (5.29)
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Here, we consider the integral over V.

V(0)) (5.30)

/ HV(0))y P(V)dV (5.31)
-[v i 1¥(L+ 20) (e H - o)

X (27r]l\f/;T) : exp (— %X;) av (5.32)
_ (%) : / V23 (—1)k(1 + 2k)

y k=0

x (e7%1V — e ™) exp (—aV?) dV (5.33)
- M(—1)k<1 +2k)2 (%)

X /OO V2 (e trV — e %) exp (—aV?) dV (5.34)

where a = ThyT and by, = 7. We can proceed this calculation as

1
{ % ) STl = Sy

1 2\ 2 c
- 5 + ) €k erfc(ck) — W (535)
where £ is ;z_kf = t %% We consider the normalization by the average

klnetlc energy k:BT as

{0+ ) e (551) - o]
- [(1 + Qk—cj> ez erfc (%) . \/Q;k” (5.36)
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Then, we divide the first term (k = 0) in the summation as

(V(t)V(0))
(V2(0))
2c

:u+28y@ak@y—;¢

(—1)%(1 + 2k)

x {1+ 2¢ Uﬁl)zefc ¢ 1—|—2C2 Zzefc<c>
k+12)  T\rt w2 )\

— 3 (-1)5(L + 28) (\ﬁ(i{l i j;k) (5.37)

k=1

NE

_l_

b
Il
—

o0

=(1 + 2¢*)eerfe(c) — % + ) (—1)F(1 4 2k)

2c2 e c 2¢2\ &2 c
X {(1 + m) e (12 erfe (k——i-l) (1 + ﬁ) ex? erfc (E)]

=e° erfc ——+Z F(1+ 2k)
k=1
_ 2 c 2 c
X <e<k+1)2erfc (k n 1) — exZerfe (k:))
> 1 2 c
2 kLo
— 8¢ ;(—1) Eek2 erfc <E> (5.38)

This is the analytical form of VAC at the low mass limit M < 1

5.4 Discussion

5.4.1 Comparison theory with simulation results

We plot the analytical results (eq(5.13)) with the simulation results in Figure
5.5, with the time rescaled scaled time by M*~!. In Figure 5.5, the theoretical
results slightly deviates from the simulation results in the large mass cases.
This deviation would be due to the approximation for collision statistics of
equation (5.9). To reproduce the VAC in the high mass case precisely, we
should carefully consider the approximations for the mass ratio expansion.
We plot the analytical expression (eq(5.38)) With the simulation results
in Figure 5.6 with the time scaled the time by M*~2. We fine that the theory
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0.01 0.1 1 10 100 1000
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Figure 5.5: VAC of theoretical results for large M case (eq. (5.13)), together
with simulation results for various M. Horizontal axis is scaled by M*~1.

successfully reproduces the short time behavior of the simulation results at
the low mass case. In Figure 5.4, our theoretical model does not have any
fitting parameters and the value appeared in the theory can be completely
determined from the simulation setting. Therefore, we can say that our model
successfully incorporates the effect of correlated collisions as we observed in
Figure 5.1(c) although this model is slightly phenomenological.

From the theoretical analysis above, we find the difference of the factor
used for the rescaling of the time between the high mass and low mass cases.
The time scale of the relaxation of VAC of the tracer would be roughly
determined by the collision frequency(4.5) and collision rule(2.4). When the
mass of the tracer is sufficiently large, the characteristic time of the VAC is
scaled by M*—1. In this case, the velocity of the tracer is small compared
with the ideal gas, and this make the collision frequency to be the constant
as can be seen in equation (4.5). Thus, the dominant factor affecting the
relaxation time is the collision rule (2.4). This is the reason why the time
should be scaled by M*~! in the high mass case. For the sufficiently low mass
case, the tracer velocity is sufficiently high compared with that of the gas
particle and reversed by the single collision. In this case, the velocity of the
ideal gas particle is almost unchanged by the velocity change of the tracer.
In this case, the collision frequency is the dominant factor for the relaxation
time of the VAC. Thus, the factor M -2 appears in the VAC in the small
mass case.
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Figure 5.6: VAC of theoretical results of VAC for low M case (eq.(5.38)),
together with the simulation results of various M. Horizontal axis is scaled
by M*~1/2,

5.4.2 Expandability of our theory

The theoretical model describing the VAC of the light tracer shown in subsec-
tion 5.3.2 can not describe the cases for the arbitrary masses and dimensions.
In this subsection, we consider the relation of the theory to such cases.

In our model, we regard the gas particles neighboring the tracer as two
fixed walls. This model can be described by the renewal theory formalism
by employing the appropriate statistics of the correlated collisions in light
tracer limit. If the tracer mass is not sufficiently small compared with the
gas particles, the fixed wall picture is not valid. In this case, we have to
consider the statistics of the correlated collisions for such a tracer mass in
the renewal theory to reproduce the tracer dynamics.

In the model, we use the properties of the one dimensional system. Thus,
our model would not be directly expanded to the high dimensional cases.
In such cases, we have to consider the complex geometry of the correlated
collisions that does not exist in one dimensional system. Nevertheless, we
believe that our model is instructive for high dimensional systems because
the model can incorporate the correlated collisions successfully.
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Chapter 6

Conclusions

In this work, we studied the short time dynamics of the tracer in the ideal
gas by using the simulations and theories. Here, we show the summary of
the results and conclusions.

Chapter3: Short time dynamics of tracer in 3
dimensional ideal gas

In this chapter, we performed the hard sphere simulations for the short time
dynamics of the tracer in the ideal gas. When the mass of the tracer is high
or the number density is low, the velocity autocorrelation function (VAC)
shows the exponential decay and such a behavior can be reproduced by the
Enskog theory. However, when the mass of the tracer is small and the number
density is high, the VAC shows negative value and the Enskog theory fails
to reproduce such a behavior. In such a case, the collisions are strongly
correlated even though the fluid molecules do not interact each other. To
understand the origin of the correlated collisions in the ideal gas, we focused
on the individual collisions and introduced velocity autocorrelation according
to the number of collision events, ~,. From the detail analysis of ~,, the
correlated collisions are caused by the collisions with the same gas particles.

Chapter4: Statistic of single collision in arbi-
trary dimension

In this chapter, we theoretically analyzed the single collision statistics of the
tracer to reproduce the simulation results in chapter 3. We obtained the an-
alytical expression of the single collision statistics for arbitrary tracer masses
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in arbitrary dimensions. From the statistics, we deductively calculated the
free time distribution and the velocity correlation of single collision, v; in 3
dimension. We confirmed that the theory completely agree with the simu-
lation results. Although our theoretical calculation can be justified only for
the non-interacting ideal gas systems, it would be instructive for the systems
in which the fluid particles interact with each other.

Chapter5: Short time dynamics of tracer in 1
dimensional gas

From the pictures of the correlated collisions obtained in chapter 3, we the-
oretically analyzed the VAC of the tracer in 1 dimensional systems in the
short time scale. For the heavy tracer cases, the collisions are independent of
each othet and the VAC can be analyzed by the renewal theory formalism.
However, our calculation has the slight deviation from the simulation results,
and this deviation is due to the approximation of the collision statistics em-
ployed in our calculation. For the light tracer cases, the correlated collisions
are caused by the collisions with the same gas particles. In such a case,
we can construct the phenomenological model incorporating the correlated
collisions. This model successfully reproduce the VAC from the simulation
for M < 1 cases. In these models, all the variables appeared in the mod-
els can be determined by the system settings. Namely, there are no fitting
parameters.
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Nomenclature

We showed the parameters used in this work in the table below.

Parameter Meaning
t time
o tracer size
M mass of tracer
M* dimensionless mass of tracer

mass of ideal gas particle
number density of ideal gas
dimensionless number density of ideal gas
dimension

side length of of simulation box

volume of simulation box

number of ideal gas particle
position of tracer
velocity of tracer
position of i-th ideal gas particle
velocity if i-th ideal gas particle
unit vector between centers of tracer and gas particle
Boltzmann constant
temperature
diffusion coefficient
fluid viscosity
friction coefficient kernel
Gaussian noise
mean free time between collisions
mean distance between neighboring particles in 1 dimension

b«\m%NJ @%§ﬁ>gﬁ<m2<h&b*b§
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Small particles drive vibration of large particle

Fumiaki Nakai, Takashi Uneyama and Yuichi Masubuchi
Department of applied physics Engineering, Nagoya University, Nagoya 464-8603, Japan
Nakai.fumiaki@b.mbox@nagoya-u-.ac.jp

1. Introduction:

A colloidal particle placed in a solvent moves randomly. This
motion is driven by collisions of many solvent molecules. Such a
random motion is called as the Brownian motion, and
phenomenologically, it can be described by the Langevin equation.
However, the use of the Langevin equation is not always justified. In
this study, we found an unexpected vibrational motion of a large
particle immersed in a liquid. We analyze the short-time scale motion
of a large particle by simulations and theoretical model.

Fig.1 Snapshot of simulation.
2. Simulation: The tracer and the small particles.

We use molecular dynamics simulation to analyze the
motion of a tracer particle. We put the tracer particle and many 10x10°-
small particles in the simulation box with the periodic
boundary condition. We use dimensionless units by setting the
small particle diameter o, mass m and the Lennard-Jones(LJ)
potential energy ¢ as unity. We set thermal energy kg7 as 1.
The interaction between small particles is the LJ potential,
whereas the interaction between the tracer and the small
particles is the shifted LJ potential, these particles only show
repulsive interactions. To control the temperature, we employ
the Langevin thermostat for small particles. The tracer particle
is not directly coupled to the Langevin thermostat. We applied
the numerical integration scheme recently developed for the ° ' ' ' ' '

2

mean square displacement <4r(t) >

. . . 0.0 0.2 0.4 0.6 0.8 1.0
Langevin equation! for the small particles and the standard time t
velocity Verlet scheme for the tracer particle. We varied the Fig.2 The mean square displacement
diameter R and mass M of tracer particle to see their effects. of the tracer particle < Ar(t)2>
3. Results:

o
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Fig.1 is a snapshot of the simulation for the tracer particle
diameter with the R=5 and M=1. Fig.2 shows the mean square
displacement (MSD) of the tracer particle. At the short-time
scale(#<0.5), we observed a clear oscillation in the MSD. Fig.3
shows the correlation of the velocity of the tracer particle. At
this time scale, the small particles move ballistically. Thus the
velocity of the large particle is changed by series of collisions
of small particles. The oscillation may be driven if the -
velocities of a large particle before and after a collision event
has a negative correlation. The detailed simulation data and
theoretical analysis will be presented on site. ) ' ' ' ' '
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Fig.3 The velocity correlation
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of the tracer particle <v(t)»(0)>



Langevin equation!!! We found unexpected MSD vibration
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We found unexpected tracer vibration
that disobey Langevin dynamics
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For tracer vibration, We found
angular frequency . is proportional to R1 M0-5 792

¥

p o) We constructed theoretical model
k' (R + 1) A that explain w. for R and M

\
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— x Rl MO.5
M We may find mechanism of T dependence of w.

by considering small particles distribution
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R: tracer size, r: small particle size
M: tracer mass, AZ: tracer displacement, &, k’: spring constant,
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Mechanism of Unusual Vibration of Large Particle in Fluid
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ABSTRACT

By the molecular simulations, we study the col-
loid dynamics in a short time scale in which the
number of collisions between the colloid particle
and the fluid particles is not sufficiently large. We
found the mean square displacement(MSD) ex-
hibits oscillations at the short time scale region.
We studied the dependence of the various param-
eters on the oscillation frequency. The oscillation
mechanism can be categorized to the three differ-
ent regions depending on the fluid density. We

propose the three models for these regions.
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Fig.1 Mean square displacement for M =
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Fig.2 Velocity autocorrelation functions for
p = 0.001,0.1 and 0.4. The tracer size and
mass are R = 8 and M = 0.0625.
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number density of ideal gas p were
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IN DILUTE FLUID, SELF DIFFUSION COEFFICIENT OF TRACER DEPENDS ON ITS MASS

Fumiaki Nakai, Takashi Uneyama and Yuichi Masubuch
Graduate School of Engineering. Nagoya University. Nagoya 464-8603
nakai.fumiaki@b.mbox.nagoya-u.ac.jp

Introduction

In general, the self diffusion coefficient D of the massive tracer immersed in a solvent obeys the Stokes-Einshtein
relation(SE)[!1. If D obeys the SE, D does not depend on the tracer mass M. However, when the tracer is not sufficiently
larger than the solvent molecule, the SE can be violated. In such a case, D depends on M2l. In the previous researchl2],
M dependence of D of the tracer in a Lennard-Jones liquid was investigated. The multi-body correlation between the
fluid particles induces a complex phenomenon. In our study, we consider a simple system without the multi-body
correlation of the fluid particles, to reveal the tracer dynamics. We investigated the M dependence of D of the tracer in
the ideal gas.

Simulation

We employed the hard sphere simulationl3]. We put one tracer and 10° particles in the simulation box imposed periodic
boundary conditions. We express the masses of the tracer and gas particles as M and m, the size of the tracer as o (the
ideal gas particle size is zero), the temperature of the system as 7, and the number density of gas particles as p. Then, m,
kgT, o are chosen as unity (kg is the Boltzmann constant). With these dimensionless units, the system can be specified
only by M and p. The M dependences of D of the tracer for several p obtained from our simulation are shown in Fig.1.
For p < 1, M dependence of D is D o M~? when M < 1, whereas D o« M° when M > 1. Such results have not
been reported in the literature. On the other hand, for p = 1000, D is almost independent of M.

Theory

To understand the nontrivial M dependence of D, we constructed a theoretical . [

model. Burshtein analyzed the velocity autocorrelation function C(¢) focusing on 10 \.\_\w
the collisional dynamics theoreticallyl4l. Following Burshtein, we assumed the 10° -

successive collision events are statistically independent. The time interval 102 -

distribution between successive collisions P(7) is given by exponential. Also, the 1o
velocity correlation before and after a collision is independent of the time interval. Q

We express the velocity after the p-th collision as V,. We introduced 10~ E 0.001 =

¥ =(V,- V) <V§) as a constant which characterizes the velocity change by a L

collision. From C(¢), we can calculate D by the following equation. 10° |- 1000
kBT s kBTf 10'5

D =2~ Cit)dt = ——— I I I | 1 : )

M ), M1 —y) 0001 001 04 1 10 100 1000

Where 7 is the average interval between collisions.To determine the M dependence M

of D, we must calculate 7 and y. We theoretically calculated y and 7 by calculating '

statistical averages of a collision process, in which the momentum and the kinetic Fig.1 M dependence of D of

energy are conserved. Finally, we have following expressions for y, 7 and D. tracer in ideal gas for several p.

Dots and Lines show the
y = 3M ,T = ! ZmM ., D= L EM simulation and theoretical results.
3M + 4m po? \| nkgT (m + M) po\ 8z \/mM(m + M)

In dimensionless units, D becomes (3M + 4)/4/ 87p2M (1 +M). The result is shown in

Fig.1 by solid curves. For p < 1, theoretical results agree almost perfectly with the simulation results. However, for
p > 1 the theoretical value does not agree with the simulation results. This inconsistency would be due to the fact that
the several collisions between the tracer and the ideal gas particles are not statistically independent for p > 1.15]

Conclusion

We investigated the M dependence of D of the tracer in the ideal gas by numerical simulations and theoretical analysis.
From the simulation results, we found the nontrivial M dependence of D for p < 1. We developed theory which can
explain the nontrivial M dependence of D for p < 1 obtained by the simulation.
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1 Mass depends on diffusion constant D

Stokes-Einstein relation(SE)
(Ar%(r)) = 6Dt

_ kgT
B 3rno

When tracer is not sufficiently large,
D depends on tracer mass M nontrivially(ll

We want to know nontrivial M dependence of D
Consider simple system
Tackle by simulation and theory

2 Target: Tracer diffusion in ideal gas

o
|ldeal gas mass

Tracer size

Temperature

Tracer mass

- Only 2
Parameters

Number density

|deal gas size

Investigate M dependence of D by changing p

3 Hard sphere simulation(2]

D is calculated from (Ar?(t))

Points
* For p <1, D depends on M

* For p > 1, D do not depends on

4 Theory based on stochastic collision dynamics

Tracer velocity autocorrelation function derived by Burshtein

3k, T
(V(1) - V(0)) = V v, 7 . constant

Assumption
1 Velocity after collision depend only on one before collision

JdVP+1VP+1P(Vp+1 |V,)=rV, V,:Velocity just before p-th collision

2 Distribution of collision time interval is exponential

P(r) =7exp(—7/7)  z:Collision time interval

D derived from Green-Kubo formula

D= %ro V(1) - V(0))dt = _ThT

(1
0 M@ —vy) )

Analyze y and 7 by considering distribution of V, u, and ,

From conservation of momentum and energy
3IM

_ 2\ _
y =(V, -V, .)(Vp) = M+ dm

(2)

Consider collision frequency

2\/7rkBT (m+ M)
pa coe

2mM )

1 kT

po*

3M + 4m
87 \/mM(m + M)

From equations (1),(2),(3) D =

5 Compare our theory with simulation results

p

o 0.001
a A1

x 1000
— Theory

X XX XX

Forp <1

Theory reproduces D from simulation

Forp>1

Theory does not reproduce D from simulation
Several collisions have correlation attributed to
collisions with same ideal gas particles!“
—Assumption 1 is not correct for p > 1

0.001 0.01 0.1 10 100 1000

M
Theory perfectly reproduces
y and 7 from simulation
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100 1000

V,isrelatedto v,

For M <1 and p <1, D depends on M. We clarified this mechanism
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Velocity change due to collision of tracer in ideal gas in arbitrary dimension

F. Nakai, Y. Doi, T. Uneyama, and Y. Masubuchi
Graduate School of Engineering, Nagoya University

ABSTRACT

We studied the velocity change of a tracer par-
ticle due to the single collision with an ideal gas
particle by using the kinetic theory in arbitrary
dimensions. We calculated the correlation of the
tracer velocity before and after a collision event,
1. We analytically calculated v; and obtained the
explicit expression in terms of the mass and the di-
mensions. Our analytical expression shows that 1

depends on the dimensions rather strongly.
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