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Abstract

Diffusion of a particle is ubiquitous and has been investigated for over one hundred years. One of

the well-known descriptions of the diffusion phenomenon is the Fick’s law, which expresses the time

evolution of the concentration field of the particles at a macroscopic scale. On the microscopic

scale, diffusion can be regarded as the random motion of a particle, which is a consequence of

the collisions with the fluid molecules. For a simple case where the particle exhibits normal

diffusion with the Gaussian displacement distribution, the Brownian motion is described using

the Langevin equation. These simple descriptions are not always valid for complex systems like

glassy media, polymeric systems, and even gas systems. To express such a complex diffusion,

various theoretical endeavors have been conducted, e.g., generalized Langevin equation for some

viscoelastic materials, the Enskog theory for gases and liquids, mode-coupling theory for liquids and

glassy media, or phenomenological descriptions like the Rouse, Zimm, and Doi-Edwards models

for polymeric systems. Although these frameworks are sophisticated and useful, some systems

cannot be described using the conventional frameworks. In the structureless media where the

constituent particles are uniformly distributed in space, the dynamics of a constituent particle

can exhibit intriguing behaviors; the constituent particle exhibits anomalous and/or non-Gaussian

diffusion even in its simple nature. This dissertation numerically and theoretically investigates

the dynamics of particles in simple structureless media; the constituent particles are spherical (or

point masses) and distributed uniformly in space. The effects of basic parameters such as particle

mass and shape on diffusion phenomena are explored. Chapters 2 to 5 correspond to the works by

Nakai [1–4], that have been published, as follows:

Chapter 2 [F. Nakai, Y. Masubuchi and T. Uneyama, “ Short time dynamics of

a particle in an ideal gas,” Phys. Rev. E. 102, 032104 (2020)]. The dynamics of a

spherical particle (target particle) in a simple gas media consisting of point masses are examined

using event-driven type simulations. In this gas system, the structure of the media is always an
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ideal gas in any situation. The dynamics of the target particle is calculated with various target

particle masses and number densities of the ideal gas. Even in such a simple nature, the target

particle exhibits non-Gaussian diffusion when the target particle is lighter than that of the ideal

gas particle. Further, the lightweight particle shows non-Gaussian and anomalous diffusion, which

is often observed in some complex media like glass-forming liquids or polymeric systems, when the

number density of gas particles is large. To clarify the origin of the observed anomalous and non-

Gaussian diffusion, this chapter analyzes the dynamics of the particle, focusing on the collisions

between the target and gas particles. The anomalous and non-Gaussian diffusion originates from

the repeated collisions of the target particle against the same gas particle.

Chapter 3 [F. Nakai, Y. Masubuchi, Y. Doi, T. Ishida, and T. Uneyama,“Fluctuating

diffusivity emerges even in binary gas mixtures,”Phys. Rev. E 107, 014605 (2023)].

To clarify the non-Gaussian diffusion of a lightweight particle immersed in a dilute gas, which

is observed in Chapter 2, a stochastic simulation is constructed. This simulation requires two

inputs. One is the collision statistics, which details when and where the target particle collides

with a gas particle; these statistics are derived from classical gas kinetics. The other input is

the rule of the velocity change of the lightweight particle at the collision, which is obtained from

the conservation of the energy and momentum between the two colliding particles. Using the

constructed simulations, the dynamics of a lightweight particle in a dilute gas is computed with

various mass ratios. It is found that, even in the simple gas system, the lightweight particle exhibits

Brownian yet non-Gaussian diffusion; the mean square displacement is linear against time, while

the displacement distribution obeys the non-Gaussian statistics. The Brownian yet non-Gaussian

diffusion in the current system is attributed to the temporal fluctuation of the diffusion coefficient,

the so-called “fluctuating diffusivity” that the lightweight particle experiences. The origin of the

observed fluctuating diffusivity is clarified: the separation of the relaxation timescales for the

velocity direction and speed of the lightweight particle. Namely, in the short timescale where the

speed remains unchanged, the lightweight particle diffuses by changing the velocity direction. The

speed of the lightweight particle fluctuates in the longer timescale, and the diffusion coefficient of

the lightweight particle also fluctuates along with the speed.

Chapter 4 [F. Nakai and T. Uneyama, “Brownian yet non-Gaussian diffusion of

a lightweight particle in heavy gas: Lorentz-gas-based analysis,” Phys. Rev. E

108, 044129 (2023)]. The theoretical analysis is performed to represent the Brownian yet non-
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Gaussian diffusion observed in a lighter particle immersed in the heavier gas particles. The lighter

particle in heavier gas particles has been traditionally modeled by the Lorentz gas, comprised

of a single mobile particle in fixed spherical obstacles, and this model is utilized for the current

purpose. The time-correlation functions, such as a mean square displacement and non-Gaussian

parameter for the Lorentz gas, are analytically calculated using the theoretical framework of the

point process. These results do not exhibit the Brownian yet non-Gaussian diffusion since the

speed of the mobile particle in the Lorentz gas remains unchanged. To incorporate the effect of

the change in the speed of the lightweight particle over a long timescale, the ensemble averages

for the time-correlation functions are analytically calculated. The averaged results successfully

demonstrate the Brownian yet non-Gaussian diffusion and quantitatively agree with the data for

the binary gas mixture without any ad hoc parameters.

Chapter 5 [F. Nakai, M. Kröger, T. Ishida, T. Uneyama, Y. Doi, and Y. Msubuchi,

“ Increase in rod diffusivity emerges even in Markovian nature,”Phys. Rev. E 107,

044604 (2023)]. The dynamics of a rod suspended in a simple media composed of fixed spherical

obstacles are numerically examined. To this end, a stochastic simulation assuming the Markovian

process, which requires the collision statistics and rule of the velocity change, is constructed.

These inputs are obtained from gas kinetics and classical mechanics, respectively. The dynamics

of the rod is analyzed with various rod lengths and number densities of the obstacles, and the

diffusion coefficient is calculated. In this system, the diffusion coefficient of the rod exhibits

upturn behavior with increasing the obstacle number density when the aspect ratio of the rod

is sufficiently large, even in the Markovian process. Thanks to the Markovian nature, the power

exponents of the diffusion coefficient for dilute, intermediate, and concentrated density regimes are

straightforwardly understood based on the collision frequency and angular velocity.

In conclusion, this dissertation investigated the dynamics of spherical and rod-shaped particles

in simple structureless media where the structure of the system is just an ideal gas. Even in such a

simple environment, some intriguing phenomena appear. For a spherical particle in point masses,

anomalous and non-Gaussian diffusion caused by repeated collisions with the same gas particle

can appear. Even for dilute cases, the numerical simulations and theoretical analysis clarified that

lightweight particles exhibit non-Gaussian diffusion over the time scale with the normal diffusion,

originating from the long-time persistence of the speed of the lightweight particles. For a rod-

shaped particle, the counter-intuitive increase in diffusion coefficient against the obstacle density
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emerges, which can be explained via the collision frequency and angular velocity. The above-

mentioned observation of the interesting phenomena will not be limited to the simple structureless

media investigated in this dissertation. This dissertation will provide fresh insights into the study

of the complex diffusion phenomena exhibited by lightweight or long particles.



Nomenclature

variables meanings

β inverse temperature

V system volume

t time

∆t time lag

T observation time

tc,i time at ith collision

τ relaxation time

σ radius of particle

d diameter of particle

M mass of target particle

m mass of fluid particle

mi mass of ith fluid particle

mt total mass

mr reduced mass

N number of fluid particles

ρ number density of fluid particle

n number of collisions for target particle

R position of target particle

Rc,i position of target particle at ith collision

∆R(∆t) displacement at time lag ∆t

V velocity of target particle

Vc,i velocity of target particle after ith collision

P momentum of target particle

Ω angular velocity of target particle
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Ωc,i angular velocity of target particle after ith collision

U direction vector of rod

Uc,i direction vector of rod after ith collision

r position of fluid

v velocity of fluid

vi velocity of ith particle

vrel relative velocity

vcent center of mass velocity

vc,i velocity of colliding particle at ith collision

pi momentum of ith fluid particle

uc,i direction vector at ith collision

Fij force between ith and jth particles

Gs self-part of van-Hove correlation function

f(x; y) distribution function of variable x for given parameter y

P (x; y) probability density of x for given parameter y

Ψ(x; y) cumulative probability of variable τ for given y

Peq(x) equilibrium distribution of variable x

L length of major axis of rod

Le effective length of rod defined as L+ 2σ

I inertia tensor of rod

⟨x⟩ ensemble average of x

ν(x) collision frequency with x

ν̄ total collision frequency

λ free path

∆tf free time

ω solid angle

a differential cross section

Lb box length

γn correlation function before and after n collisions

k wave vector

s complex frequency

α non-Gaussian parameter

D translational diffusion coefficient
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Drot rotational diffusion coefficient

δ(∆t, T ) time-averaged MSD

ζ friction coefficient

ξ stochastic noise

n normal vector

z collision coordinate along major axis of rod

x̂, ŷ, ẑ unit vectors of cartesian coordinate along x, y, and z axes, respectively

ϕ and θ angles

H hamiltonian

EU potential energy

E total energy

ϵ energy unit
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Chapter 1

Genreral Introduction

Abstract

In this chapter, the diffusion phenomena and their descriptions are presented. The diffusion equa-

tion and the Langevin equation are introduced as basic models. The discussion then moves to

the BBGKY hierarchy, serving as a formal theoretical framework, while it is generally unsolvable.

The chapter progresses to discuss frameworks beneficial for analyzing complex dynamics. The

generalized Langevin equation is presented as a model which describes a particle in viscoelastic

media. Subsequently, sophisticated models based on liquid structures and phenomenological mod-

els without relying on structures are explained. Afterward, unresolved diffusion phenomena that

change qualitatively in response to variations in a system parameter without a qualitative change

in the structure are highlighted, and the subject of this dissertation is presented.

1.1 Diffusion

Small objects, such as molecules and/or nano-particles, situated in a fluid exhibit random motions

as if they were alive. This motion was first discovered by Robert Brown [5] in 1827. Subsequent

theories by Einstein [6,7] and experiments by Perrin [8] revealed that the randommotion of particles

originates from collisions with solvent molecules. This discovery served as proof of the existence

of molecules. The random motions of molecules/nano-particles are universal phenomena at small

length scales, transcending the realm of physics into important areas of chemistry, engineering, and

biology. The statistics of random motion strongly depend on the nature of the molecules/nano-

particles and the solvent, which leads to diverse diffusion phenomena like gas [9–12], polymer

11



CHAPTER 1. GENRERAL INTRODUCTION 12

[13–15], liquid crystals [14, 16], glass [14, 17], and biological systems [18]. Understanding the

physics of such diffusion at microscopic scales has been crucial in diverse fields.

Macroscopically, random motions of particles can be observed as the time development of the

distribution function of the particle, f(R; t), with R and t being the position of the particle and

time. Fick’s second law roughly predicts the time-development of f(R; t) as follows:

∂f(R; t)

∂t
= D

∂2f(R; t)

∂R2
(1.1)

Equation (1.1) expresses the simplest diffusion process. Microscopically, this time-development of

the distribution function is attributed to random motions of particles. If a single particle (hereafter

called a target particle) is traced, the motion is phenomenologically described using the Langevin

equation [13,19–21] for simple media, expressed as follows:

M
d2R(t)

dt2
= −ζ

dR(t)

dt
+ ξ(t), (1.2)

where ζ is the friction coefficient, and ξ denotes the Gaussian white noise. To satisfy the fluctuation-

dissipation theorem, the first and second moments of ξ are given as follows:

⟨ξ(t)⟩ = 0 (1.3)

⟨ξ(t)ξ(t′)⟩ = 2β−1ζδ(t− t′)1, (1.4)

where β is the inverse temperature, ⟨x⟩ the ensemble average of a variable x, and 1 the unit

tensor. The random motion of the particle can be characterized using statistical time-correlation

functions. When the dynamics of the particle is described using Equation (1.2), the mean square

displacement, defined as ⟨∆R2(∆t)⟩ with ∆R(∆t) being the particle displacement at time-lag ∆t,

becomes linear against time, except for the short timescale where the particle motion is ballistic,

as follows:

⟨∆R2(∆t)⟩ = 6D∆t (1.5)

where D is the translational diffusion coefficient of the target particle, given as D = 1/βζ in

this case. The linear relation of the mean square displacement with time, ⟨∆R2(∆t)⟩ ∝ ∆t, is

called the normal diffusion. Further, in the linear regime, the self-part of the van-Hove correlation

function, defined as Gs(∆R,∆t) = ⟨δ[∆R− (R(t+∆t)−R(t))], becomes the following Gaussian

distribution:

Gs(∆R,∆t) =

(
1

4πD∆t

)3/2

exp

(
− ∆R2

4D∆t

)
, (1.6)
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Such a simple description is not always adequate for comprehensive analyses of the dynamics

in diverse conditions, particularly with regard to particle/media characteristics and observation

timescale. For instance, the constituent particles in some complex media like polymeric liquids [22]

or glass-forming liquids [17, 23] can exhibit anomalous diffusion, expressed as ⟨∆R2(∆t)⟩ ∝ ∆tκ

with κ ̸= 1, accompanied by the non-Gaussian statistics for Gs(∆R,∆t). Some systems, like

polymeric liquids [24,25] or biological media [18,26,27], show the linear mean square displacement

⟨∆R2(∆t)⟩ ∝ ∆t while Gs(∆R,∆t) deviates from the Gaussian distribution, called Brownian

yet non-Gaussian diffusion. Some sophisticated frameworks or phenomenological modelings are

required to gain an in-depth understanding of such complex diffusion of the particle.

1.2 BBGKY Hierarchy

On the microscopic scale where all the constituent molecules/particles are observable, the dynamics

of the molecule/particle obey the classical mechanics at room temperature; the particle motions

in the future are completely determined using the instantaneous coordinates and momenta of the

particles in the system. The Hamiltonian H for the system involves all dynamical and structural

information, and it is formally represented as

H({ri}, {pi}) =
∑
i

p2
i

2mi

+ EU({ri}) (1.7)

where ri and pi are the position and the velocity of the ith particle, mi being the ith particle mass,

and EU denotes the interparticle potential energy depending on the system. For a given initial

coordinates ri and momenta pi, the dynamics of the ith particle is calculated from Equation (1.7):

ṙi =
∂H({ri}, {pi})

∂pi

=
pi

mi

(1.8)

ṗi = −∂H({ri}, {pi})
∂ri

=
∑
j

Fij (1.9)

where ẋ means the time-derivative of the variable x, Fij is the interparticle force between the ith

and jth particles.

For the description of the multi-particle systems, the phase space distribution function at

time t, f({ri}, {pi}; t), is useful. Since the phase points are not diminished or created, the time

development of f({ri}, {pi}; t) obeys the equation of continuity called Liouville equation [11, 12,
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28,29], which is described as

∂f({ri}, {pi}; t)
∂t

+
N∑
i=1

(
∂f({ri}, {pi}; t)

∂ri
· ṙi +

∂f({ri}, {pi}; t)
∂pi

· ṗi

)
= 0 (1.10)

Combining Equations (1.10), (1.8), and (1.9), the following relation is obtained:(
∂

∂t
+

N∑
i=1

pi

mi

· ∂

∂ri

)
f({ri}, {pi}; t) = −

N∑
i=1

N∑
j=1

(
Fij ·

∂

∂pi

)
f({ri}, {pi}; t) (1.11)

If only the dynamics of the first particle, which can be assigned as the target particle, is observed,

the distribution function for the whole variables f({ri}, {pi}; t) can be reduced. The time develop-

ment of the phase space probability density on the target particle f(r1,p1; t) is formally obtained

straightforwardly from Equation (1.11) by integrating over variables r2 · · · rNp2 · · ·pN :∫
dr2 · · · drNdp2 · · · dpN

[
∂

∂t
+

N∑
i=1

(
pi

mi

· ∂

∂ri

)]
f({ri}, {pi}; t)

=−
∫

dr2 · · · drNdp2 · · · dpN

N∑
i=1

N∑
j=1

(
Fij ·

∂

∂pi

)
f({ri}, {pi}; t)

(1.12)

Since f({ri}, {pi}; t) becomes zero when the ith particle coordinate ri is at the boundary of the

system and also f({ri}, {pi}; t) approaches zero at the limit where an ith particle momentum

approaches infinity, Equation (1.12) reduces to[
∂

∂t
+

p1

m1

· ∂

∂r1

]
f(r1,p1; t) =−

N∑
j=1

∫
drjdpj

(
F1j ·

∂

∂p1

)
f(r1, rj,p1,pj; t)

=−N

∫
dr2dp2

(
F12 ·

∂

∂p1

)
f(r1, r2,p1,p2; t).

(1.13)

Here, all the particles are assumed to be identical for simplicity. Equation (1.13) is not closed

with respect to f(r1,p1; t), and two-particle phase space distribution function f(r1, r2,p1,p2; t)

is required for further calculation. In the same manner, the calculation of f(r1, r2,p1,p2; t) de-

mands the three-particle phase space distribution function. Namely, to derive the equation for

an n-particle phase space distribution function, the n + 1-particle version is required, a relation

known as the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy [30–32]. In general,

Equation (1.13) is analytically unsolvable, and some approximations are necessary for further

computation.
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When the particles are diluted like gas systems, Equation (1.13) can be further reduced [11].

In gas systems, a constituent particle moves ballistically until it collides with another particle,

and the particle velocities change. In such a system, the right-hand side of Equation (1.13) phe-

nomenologically corresponds to the change rate of f(r1,p1; t) due to binary collisions:[
∂

∂t
+

p1

m1

· ∂

∂r1

]
f(r1,p1; t) = Γ+ − Γ− (1.14)

where Γ± means the gain and loss rates of f(r1,p1; t) due to the collisions, and they are described

as

Γ+ =
1

m

∫
dωdp2σ(ω, |p1 − p2|)f(r1,p′

1; t)f(r1,p
′
2; t) (1.15)

Γ− =
1

m

∫
dωdp2a(ω, |p1 − p2|)f(r1,p1; t)f(r1,p2; t), (1.16)

where a(ω, |p1 − p2|) denotes the differential cross section with a solid angle ω, which depends

on the interparticle potential. p′
i and pi express the momenta of the ith particle before and

after the collision, respectively. Here, Equation (1.14) is nothing but the Boltzmann transport

equation. From the Boltzmann equation, various statistical quantities for gas systems, like diffusion

coefficient, thermal conductivity, shear viscosity, etc., have been successfully computed [9, 11, 12].

While the Boltzmann equation is useful to express the transport phenomena, the application is

limited to the gas systems where the dynamic correlations can be ignored. Namely, the Boltzmann

equation can not directly address complex systems like polymeric liquids [13, 15], glass-forming

liquid [17,33], or some concentrated media [34,35].

1.3 Generalized Langevin Equation

To account for the diffusion of a particle in concentrated media, the generalized Langevin equation

[19, 28, 36–39] is helpful. This equation is the generalized version of Equation (1.2), incorporating

the memory effects of fluid, expressed as follows.

M
dV (t)

dt
= −

∫ t

0

dt′ζG(t− t′)V (t′) + ξG(t) (1.17)

where ζG(t) is the time-dependent friction coefficient reflecting the viscoelasticity of the fluid. For

the generalized Langevin equation, the first and second moments of the noise term satisfy the
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following relations.

⟨ξG(t)⟩ = 0 (1.18)

⟨ξG(t)ξG(t′)⟩ = β−1ζG(t− t′)1, (1.19)

Here, if the relaxation time of the viscoelastic liquids is sufficiently small compared with the

observation timescale, the memory kernel can be approximately expressed using the Dirac delta

function: ζG ≃ 2ζδ(t − t′). In this case, Equation (1.17) can be reduced to Equation (1.2). The

generalized Langevin equation is one of the successful descriptions for diffusion in soft matter

systems [22,40].

However, Equation (1.17) cannot always be justified. The generalized Langevin equation (1.17)

can be formally provided from the Hamilton equation for the target particle velocity. This deriva-

tion employs the projection operator formalism, as detailed in literature [19,28,29,36–39]. Nonethe-

less, the obtained formal expression does not tell us the information about the memory kernel and

the statistics of the noise; the formal expression can not be practically analyzed. To avoid this dif-

ficulty, some phenomenological assumptions should be introduced into the formal expression, and

that is the Gaussian noise assumption, as expressed in Equations (1.18) and (1.19). The Gaussian

noise approximation can be justified when the target particle velocity slowly changes compared

with the other variables; the effects of rapid variables can be regarded as the Gaussian noise due

to the central limit theorem. Meanwhile, it cannot be told if the target particle velocity changes

more slowly than other variables, except for simple systems, until detailed observations are con-

ducted. Actually, in some complex soft matter media like colloidal suspension [41], glass-forming

liquids [17], polymeric liquids [24, 42], rod-shaped particle [25, 43], and biological systems [26, 27],

the constituent particles exhibit non-Gaussian diffusion. For such non-Gaussian diffusion, the

generalized Langevin equation, which often assumes Gaussian noise, can not be employed.

1.4 Structure-Based Analyses

In general, the dynamics of a constituent particle in liquids is strongly influenced by the structure

of the liquids [11,13,16,44]. Therefore, in some systems, it is rational to describe the dynamics of

the particle based on the characteristics of the structure under some approximations.

The transport coefficients of a fluid composed of hard spheres can be approximately described

using the Boltzmann equation in the dilute limit [9, 11, 12, 45], where the correlations among

particles can be ignored. However, at intermediate densities, the effects of the structure from the
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multi-particle interactions cannot be neglected [11, 12]. To overcome this issue, Enskog [11, 12]

incorporated the effect of the excluded volume of the particle into the Boltzmann equation. For

hard spheres at intermediate densities, the collision frequency deviates from the prediction at

the dilute limit, reflecting the structure of the fluid. Enskog corrected the collision frequency

by introducing a part of the information of the radial distribution function into the Boltzmann

equation. Additionally, Enskog modified the collision term by considering the excluded volume of

the particle. Consequently, the Enskog theory, which utilizes some information on the structure of

the fluid, is able to describe the transport coefficients of hard-sphere systems even for intermediate

densities successfully.

Another formalism for describing the dynamics of liquids is the mode-coupling theory [29,44,46].

This theory uses the structure factor of the liquid as an input to describe the time correlation

functions of the system variables and transport coefficients. For example, Gaskell and Miller [47]

demonstrated that the mode-coupling theory can accurately predict the time correlation function

of velocity in liquid rubidium. Furthermore, the mode-coupling theory is a potent theory capable of

predicting the slowly relaxing dynamics of the liquid particles near the glass transition temperature

based on the structure of the liquid [29, 33, 44, 46]. Vigorous studies with respect to the mode-

coupling theory are being conducted [17,44].

When a fluid undergoes a phase transition via variations in temperature or particle fraction,

the dynamics of constituent particles change drastically. The dynamics in some phases can be

modeled based on the symmetry in the system. For instance, fluids composed of rod-shaped

particles exhibit nematic transition in response to changes in temperature and density [16,48–51].

This transition, accompanied by directional order, alters the structure from the isotropic phase to

the anisotropic phase. Along with the nematic transition, it is known that the dynamics of the

constituent particles also changes from isotropic to anisotropic [13, 52, 53]. The dynamics of the

constituent particles in nematic phases can be expressed using kinetic equations that incorporate

the free energy of the nematic phase [13].

As has been explained, when the dynamics is significantly influenced by the structure, the dy-

namics of the particle can be modeled based on the characteristics of liquid structures. Meanwhile,

in some liquids, the dynamics of the constituent particles qualitatively change without accompa-

nying the qualitative variation in structures. For such liquids, the analyses of the dynamics based

on the liquid structure are impossible.
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1.5 Phenomenological Models without Relying on Struc-

tures

For the particle dynamics, which drastically changes without qualitative alternation in liquid struc-

ture, some phenomenological models have been constructed for each system. Such modelings

incorporate characteristic dynamical properties to explain the macroscopic observables, such as

diffusion coefficient, viscosity, and some relaxation functions.

In polymer melts, the dynamical behavior of the constituent polymer significantly changes

against the molecular weight [54–56], although the structure almost remains unchanged. When

the molecular weight of the polymer is sufficiently large, the diffusion coefficient of the constituent

polymer is inversely proportional to the square of the molecular weight, and the viscosity is pro-

portional to the 3.4 power of the molecular weight. Such behaviors for the long polymer can be

phenomenologically explained by the Doi-Edwards model [13,57–59]; the dynamics of the polymer

is modeled as a worm-like object that moves along the polymer conformation. Meanwhile, if the

molecular weight of the polymer is not sufficiently large, the diffusion coefficient of the polymer is

inversely proportional to the molecular weight, and the viscosity is proportional to the molecular

weight. These behaviors are explained via the Rouse model [13, 15, 60, 61]; the dynamics of the

polymer can be modeled as just the Brownian motion of the multiple particles, which are linearly

connected by springs.

Regarding solutions containing sufficiently long rod-like particles, the dynamics of the particle

can qualitatively change with increasing the concentration within the isotropic phase; the positions

and directions of the rods are uniformly distributed. When the rod-like particles are sufficiently

dilute, their dynamics can be described by the Smoluchowski equation incorporating the hydrody-

namic interaction [13,62]. For the intermediate density regime, where the average distance between

the rod-like particles becomes shorter than the particle axial length, the rotational motion of the

particles becomes strongly constrained. In this situation, the rod-like particles can rotate slowly

by diffusing along their major axis. For such a density, the rod particle experiences a significant

decrease in the rotational diffusion coefficient compared to the dilute case. The behaviors in the

intermediate density regime are explained by a phenomenological model [57, 58]. Namely, the

dynamics of the rod-shaped particle is modeled as the motion where the rotational diffusion is

strongly restricted while the motion along the major axis is not disturbed.

Although the above-mentioned phenomenological models successfully extract some essential

features of the dynamics in the systems, they are case-specific and can not be straightforwardly
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extended to different systems. So far, there is no systematic framework to express the dynamics

of the particle, which does not strongly depend on the liquid structure. For a simple instance,

the dynamics of the constituent particles in liquids can significantly change depending on their

mass, while the mass has no influence whatsoever on structure, which is a natural consequence of

statistical mechanics. Such a dynamic behavior can not be straightforwardly modeled. Muraka

et al. [63] analyzed a system composed of binary spherical particles interacting via Lennard-Jones

potentials with different masses through molecular dynamics simulation. They reported that

varying the mass of the heavier particles causes a significant change in the displacement distribution

of the lighter particles; the lightweight particle exhibits strong non-Gaussian diffusion. Fenz et

al. [64] have reported that in a binary Lennard-Jones fluid, the relaxation behavior of the velocity

of the constituent particles qualitatively changes depending on the mass of the particles. Similar

behavior caused by the alternation of mass was also reported by Acharya et al. [65] For such a

diffusion of the constituent particle, the modeling path has not been established.

1.6 Dynamics in Structureless Media

From theoretical interests, the dynamical behaviors of the constituent particle within structureless

media have been investigated. In such systems, the dynamics of the particle can exhibit intrigu-

ing behaviors while the positions or directions of the particles are uniformly distributed for any

situation [34,35,43,66].

Frenkel and Maguire [34, 35] investigated the dynamics of fluids composed of infinitely thin

hard rods using event-driven molecular dynamics simulations. As these particles have no excluded

volume, their static structure always remains that of an ideal gas, and they do not undergo Nematic

or Smectic transitions in any density regimes. In this system, at a small concentration, the motion

of the particles can be described using the Enskog theory [11,12], where each collision is assumed

to be statistically independent. Meanwhile, when the particle concentration exceeds a certain

value, a strong constraint on the rotational motion is evident. For such a concentration regime, as

explained in detail in Chapter 5, a nontrivial phenomenon has been reported: the center-of-mass

diffusion coefficient of the rod-shaped particle increases with an increase in particle concentration.

A similar phenomenon has also been reported for rod particles in two-dimensional systems [43,67].

The mechanism of this increase in diffusivity remains unsolved, although some phenomenological

models incorporating some unclear concepts were considered [35,43].

Kettel et al. [66] investigated the dynamics of a system containing particles, each formed by
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three infinitely thin rods connected at the centers of mass of each rod, by numerical simulation. In

this system, their structure is also that of an ideal gas since the particles have no excluded volume.

Unlike straight rods [34,35], the diffusivity of the particles decreases monotonically with an increase

in particle density. In high-density regions, the mean square displacement of the particles exhibits

anomalous diffusion, ⟨∆r2(∆t)⟩ ∝ ∆tκ with κ ̸= 1, and strong non-Gaussian behavior. Although

this behavior is akin to that observed in glass-forming liquids, the structure remains unchanged.

Hence, the dynamics cannot be straightforwardly analyzed within the framework of the mode-

coupling theory mentioned in Section 1.4.

Spherical particles immersed in fixed-point obstacles can also exhibit complex behavior while

the structure is homogeneous. Höfling and Franosch [68, 69] studied the dynamics of a point

particle moving among spherical obstacles, known as the Lorentz gas, using simulations. In their

system, the obstacles are allowed to overlap each other, and the distribution of the center of mass

is uniformly distributed. Even in the simple nature of the system, the dynamics of the mobile

particle drastically changes with increasing obstacle density; the mobile particle shows simple

ballistic and diffusive behavior for dilute cases, while it exhibits anomalous and non-Gaussian

diffusion for concentrated regimes. Further, the dynamics of the mobile particle is completely

confined by the surrounding obstacle at a sufficiently large concentration. Similar phenomena

of Lorentz gas systems have been reported in many works [70, 71]. The dynamics of a spherical

particle in such a simple nature can exhibit intriguing diffusion with non-Gaussianity, while it is

not simply understood using the conventional frameworks as described in Sections 1.3 and 1.4.

It should be noted here that, even in structureless media, the dynamics of the particle can be

analytically solvable in special cases. Jepson [72] and Lebowits et al. [73, 74] theoretically studied

the one-dimensional hard-rod systems, where constituent particles move ballistically along the

line until collision with the neighboring particles. Harris [75] theoretically analyzed the Brownian

version; the constituent particles move stochastically, not ballistically. Thanks to the special nature

of the one-dimensionality, the time-correlation functions of the constituent particle can be exactly

calculated. Although these works clarified the specialty of the dynamics of the one-dimensional

systems, the employed method can not be extended to the other dimensional cases.

The dynamics of the particle in the structureless media can not be straightforwardly understood

based on existing theoretical frameworks. Further, even though the investigation of such media

may provide fresh views for modeling the dynamics of the particles in diverse systems, few insights

have been gained except for slow glassy dynamics [66]. Specifically, the systematic analyses of the

impact of the fundamental particle properties like mass and shape, which can significantly affect
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the dynamics of the particle as explained in Sections 1.4 and 1.6, have not been explored.

1.7 Subject of Dissertation

In this thesis, the dynamics of a target particle situated in simple structureless media is computed

using numerical and theoretical methods. In the media, the constituent particles is spherical or

point masses, and the structure is always just an ideal gas; the positions are uniformly distributed

in three-dimensional space. The effects of fundamental parameters such as the mass and shape of

the target particle and the concentration of the media on the dynamics of the target particle is

investigated. The structure of this dissertation is organized as follows.

Chapter 2: Non-Gaussian Diffusion of Particle in Ideal Gas. This chapter examines the

dynamics of the target particle immersed in an ideal gas, which comprised of the point masses, using

the event-driven type simulations. In this system, the target particle can exhibit the anomalous

and non-Gaussian diffusion, which has been considered to be occurred in complex media. To clarify

the mechanism of this type of diffusion in the examined system, analyses focusing on the collisions

between the target particle and point masses are performed.

Chapter 3: Fluctuating Diffusivity of Particle in Gas Mixtures: Numerical Study.

The non-Gaussian diffusion of a particle can be evident even in dilute gas. To clarify the origin

of the non-Gaussian diffusion, this chapter investigates the dynamics of a particle situated in a

dilute gas, constructing stochastic simulations based on collision statistics. The detailed analyses

for time-correlation functions revealed that the non-Gaussian diffusion is caused by the fluctuating

diffusivity, and its physical origin is also identified.

Chapter 4: Fluctuating Diffusivity of Particle in Gas Mixtures: Theoretical Study.

To describe the non-Gaussian diffusion in the gas system, theoretical analyses are conducted. Based

on the Lorentz gas model, which is consisting of a mobile target particle situated in fixed obstacles,

the non-Gaussian diffusion in gas system, observed in Chapter 3, is quantitatively reproduced.

Chapter 5: Increase in Diffusivity of Rod in Obstacles. The dynamics of a single rod-

shaped particle moving through fixed point obstacles is numerically examined, under the Markovian

process. A stochastic simulation based on the collision statistics between the rod and an obstacle
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is constructed to calculate the dynamics of the rod. The dynamics of the rod are analyzed with

various aspect ratios and obstacle density, and the dynamics of the rod qualitatively changes

against these parameters.

Chapter 6: Conclusion. This chapter compiles the results and understandings gained in each

chapter. Afterward, the conclusion of this dissertation is presented.



Chapter 2

Non-Gaussian Diffusion of Particle in

Ideal Gas

Abstract

The dynamics of a target spherical particle immersed in an ideal gas, consisting of the moving point

masses, are numerically examined with various mass ratios and number density of the gas. The

target particle exhibits non-Gaussian anomalous diffusion when the mass of the target particle

is smaller than that of the gas particle in a concentrated regime. To clarify this type of diffu-

sion, analyses focusing on the collisions are performed. Consequently, the observed non-Gaussian

anomalous diffusion is attributed to the repeated collisions between the target and gas particles.

2.1 Introduction

As mentioned in Chapter 1, particles/molecules in a fluid with sizes smaller than a micrometer

undergo random motion due to the collisions with fluid molecules [6, 8]. Over time scales where

particles experience a large number of collisions, their motion can be described using a Gaussian

process due to the central limit theorem. For such a long timescale, the dynamics of the target

particle can be easily described using the conventional diffusion equation. In contrast, for short

time scales where only a few collisions occur, it is generally challenging to theoretically describe

the dynamics of the particle by simple coarse-graining descriptions.

In considering the short-time dynamics of the target particle, it might be useful first to examine

a simple system. A possible system is a target particle situated in gas particles with a hard-core

23
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potential [76–81]. Generally, in gaseous systems, it is known that collisions between gas molecules

correlate, leading to slow relaxation known as long-time tails [82, 83]. This chapter addresses a

simple system where such a long-time tail is absent. Specifically, by treating gas molecules as

point masses, a system where collisions between gas molecules do not take place is considered.

Such a setup can be regarded as an approximate representation when the size of the gas particles

is considerably smaller than that of the target particle and the mean distance between the gas

particles.

In an equilibrium state, when the size of the target particle is sufficiently smaller compared to

the mean distance between ideal gas particles, the motion of the target particle can be described

using the Boltzmann equation [11, 45], as represented in Equation (1.14). Generally, analyzing

the time correlation function from the Boltzmann equation is not straightforward. However, it

can be easily analyzed when the mass of the target particle is significantly larger than that of

the surrounding gas particles [84]. In Equation (1.14), by expanding the right-hand side in terms

of the mass ratio of the target particle to the gas particle, M/m, and retaining only the leading

terms for M/m ≪ 1, a Fokker-Planck equation equivalent to the Langevin equation (1.2) can be

straightforwardly obtained. Namely, the motion of the target particle becomes a simple Gaussian

process when the target particle is sufficiently heavier than that of the gas particle. Meanwhile,

when the target particle size is not significantly smaller than the distance between the ideal gas

particles or when the mass of the target particle is not significantly larger compared with that of

the gas particles, such a simple theoretical description may not be justified. In this chapter, by

systematically varying the mass of the target particle and the number density of the gas particles,

the motion of the target particle during time scales for several to dozens of collisions between the

target particle and the gas particles is investigated through numerical simulation.

2.2 Method

2.2.1 System Setting

The system is cubic with the periodic boundary conditions and includes a single target particle

and an ideal gas composed of N point masses; the gas particles do not interact with each other,

whereas the target particle collides with the gas particles. The interparticle interaction between

the target particle and gas particle is the hard-core repulsion potential. The target particle moves

ballistically until it collides with an ideal gas particle, and the velocity of the target particle after
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the collision is obtained based on the conservation laws of the momentum, energy, and angular

velocity as

Vc,i+1 = Vc,i +
2m

m+M
(vv,i − Vc,i) · uc,iuc,i (2.1)

where M and m are the masses of the target particle and colliding gas particle, Vc,i the target

particle velocity after the ith collision, vc,i the colliding gas-particle velocity at the ith collision,

and uc,i denotes the direction unit vector connecting the target particle to the colliding gas particle

at the ith collision. In the same manner, the velocity of the colliding particle after the collision is

calculated as

vc,i+1 = vc,i −
2M

M +m
(vc,i − Vc,i) · uc,iuc,i (2.2)

The diameter of the target particle is d, and that of the gas particle is zero. The inverse temperature

of the system is β, and the number density of the gas particle is ρ = N/(V − πd3/6) with V being

the system volume. The length of the one side of the system box is V1/3. If m, d, and β are

chosen to define the dimensionless units, the dynamics of the particles are qualitatively affected

only by the target particle mass ratio M/m and the number density of the ideal gas ρd3 for the

dimensionless representation. The following results are displayed with the scaled forms concerning

m, d, and β.

2.2.2 Simulation Protocol

In the simulation, the initial state is created to satisfy the equilibrium statistics; the target particle

and gas particles are situated uniformly in the box without any overlaps, and the velocities of the

particles are generated based on the Maxwell-Boltzmann distribution. To prevent the drift of the

system, the velocity of the center of mass of the system is subtracted from all the velocities of the

particles. Then, the velocities of the particles are scaled so that the mean of the kinetic energy per

degree of freedom becomes exactly 1/2β. For the initial state above, the time development of the

system is numerically calculated via the established event-driven hard-sphere molecular dynamics

simulations [76].

In the simulation, the handling of the image particle by the periodic boundary conditions should

be carefully treated, or undesirable overlaps between the target and gas particles can occur. In

order to prevent the overlap, the following steps are implemented.

1. An initial state is generated.
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2. The maximum component among the relative velocities between the target particle and

gas-particle vrel,max = max(vx − Vx, vy − Vy, vz − Vz) is obtained. From vrel,max the possible

minimum collision time interval between the target and mirror gas particle is calculated as

∆tmirror = (V1/3 − d)/2vrel,max.

3. The ideal gas particles that collide with the target particle in the range |rx − Rx| < V1/3/2,

|ry − Ry| < V1/3/2, and |rz − Rz| < V1/3/2 are obtained, and the minimum collision time

interval ∆tmin is also computed.

4. If ∆tmirror < ∆tmin, the positions of all the particles are updated for the time duration

∆tmirror, time is also updated as t → t+∆tmirror, while the velocities are not renewed. After

this updates, return to step 3.

5. All the positions of the particles are updated for the time duration ∆tmin, time is renewed

as t → t+∆tmin, and the velocities of the target and colliding particle are changed based on

Equations (2.1) and (2.2).

6. The steps 2-5 are repeated until 107 collisions occur.

From this procedure, the trajectories of the target particle are numerically calculated with various

target particle mass M and the number density of the ideal gas ρ. Here, in order to check the

simulations, the basic statistical properties are computed, and they are reasonable; the statistics of

the target particle velocity become the Maxwell-Boltzmann distribution, and the radial distribution

function of the ideal gas particle around the target particle becomes zero at a distance smaller than

d/2 and unity otherwise.

2.3 Results

2.3.1 Time Correlation Functions

Figure 2.1(a) represents the mean square displacement as a function of time lag ∆t for the ideal gas

density ρd3 = 1 with various mass ratios M/m. In the short time regime, the ballistic behavior,

⟨∆R2(∆t)⟩ ∝ ∆t2), is observed, and the MSD decreases as M increases. This behavior reflects

that the mean of the kinetic energy of the target particle depends on its mass: ⟨V 2(t)⟩ = 3/βM .

In a long-time regime, diffusive behavior ⟨∆R2(∆t)⟩ ∝ ∆t is observed as a consequence of the

multiple collisions by the surrounding gas particles. In this long-time regime, MSD decreases as M
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Figure 2.1: Simulation results for (a) the mean square displacement and (b) the non-Gaussian

parameter at a fixed ideal gas number density ρd3 = 1 with the various target particle masses

M/m.

increases for the small mass M/m ≪ 1, while MSD converges at the large mass M/m ≫ 1. The

convergence at large M is expected behavior since the Langevin equation, which is independent

of the mass in the long-timescale, is derived from the Boltzmann equation at the large mass limit

M/m ≫ 1 [84]. In contrast to this, the small mass case would not be simple, compared with the

situation for the large mass case.

Figure 2.1(b) displays the non-Gaussian parameters against time lag ∆t, defined as 3⟨∆R4(∆t)⟩/5⟨∆R2(∆t)⟩2−
1, at ρd3 = 1 with the various mass ratios M/m. At the initial time lag ∆t = 0, NGP shows zero

for any mass ratio, which reflects that the statistics of the target particle velocity follow the

Maxwell-Booltzmann distribution. Also, in the long-time regime, NGP approaches zero, which

is a natural consequence of the central limit theorem. Meanwhile, in the intermediate timescale,

NGPs exhibit peaks, and the peak top value becomes large when the target particle mass is small

M ≪ m. Non-Gaussian diffusion is often attributed to heterogeneous environments like glass-

forming liquids [17,85] or some polymeric liquids [25]. However, the current system does not have

any heterogeneous environments; the structure of the fluid is always the ideal gas. Therefore, the

non-Gaussian behavior would be attributed not to the structure, but the kinetics.

Figure 2.2 shows the MSD and NGP with various ideal gas number densities ρ at the constant
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Figure 2.2: Simulation results for (a) the mean square displacement and (b) the non-Gaussian

parameter at a fixed target particle mass M/m = 1 with the various ideal gas number density ρd3.

mass ratio M/m = 1. The MSDs show simple ballistic and diffusive behaviors at the short and

long timescale, respectively. The crossover time from the ballistic motion to the diffusive motion

decreases as ρ increases since the mean free time monotonically decreases with increasing ρ. In

contrast to the simple behavior in MSD, NGP exhibits a non-negligible peak. Interestingly, the

peak top value in NGP slightly increases as gas density increases for ρd3 ≳ 1, while it remains

almost constant for ρd3 ≲ 1. Although the increase in NGP with increasing matrix density has

been commonly observed in some heterogeneous systems [69], the current system does not have

any heterogeneities in the matrix structure.

From Figures 2.1 and 2.2, the dynamics of the target particle is qualitatively changed by the

target particle mass M and the gas number density ρ. For large mass M/m ≫ 1, the dynamics of

the target particle becomes approximately the Gaussian process, and it is consistent with the fact

that the dynamics of a heavier particle in light gas is approximately described using the Langevin

equation [84]. When the number density is small ρd3 ≲ 1, the dynamics of the target particle will

be analyzed using the Boltzmann equation. However, for the small mass M/m ≲ 1 and large gas

number density ρd3 ≳ 1, the dynamics of the target particle would not be expressed using simple

descriptions like the Langevin equation or the Boltzmann equation. Afterward, the dynamics of

the target particle will be analyzed for the non-trivial parameter regime: M/m ≤ 1 and ρd3 ≥ 1.
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Figure 2.3: Representative simulation results for (a) the mean square displacement and (b) the

non-Gaussian parameter of the target particle with the various scaled target particle mass M/m

and scaled gas number density ρd3 for the parameter regime M/m ≤ 1 and ρd3 ≥ 1.

Figure 2.3 illustrates the representative MSD and NGP for M/m ≤ 1 and ρd3 ≥ 1. When

M/m = 0.01 and ρd3 = 100, MSD exhibits the sub-diffusive regime, ⟨∆R2(∆t)⟩ ∝ ∆tκ with

κ ̸= 1, while MSD shows simple ballistic and diffusive behavior in the other parameter sets.

The sub-diffusive regime has been reported for the constituent particles in some complex systems

like glass-forming liquids [17] and polymeric liquids [22]. In Figure 2.3, NGP has a significantly

large peak for M/m = 0.01 and ρd3 = 100. The sub-diffusive behavior without the Gaussian

distribution can not be straightforwardly understood based on the generalized Langevin equation

and the Boltzmann equation. One question here may arise: what is the origin of the observed

sub-diffusion accompanied by the non-Gaussianity in the current ideal gas system?

To investigate the dynamics in detail, the velocity autocorrelation function (VAC), defined

as ⟨V (∆t) · V (0)⟩βM/3, is calculated. The representative simulation results of VAC for the

parameter regime M/m ≤ 1 and ρd3 ≥ 1 are displayed in Figure 2.4. For the case of M/m = 0.01

and ρd3 = 100, the VAC exhibits a negative correlation at the intermediate time regime where

MSD shows the sub-diffusion as displayed in Figure 2.3(a). The negative correlation means that the

target particle is effectively reflected back through some number of collisions with the gas particles.

Here, based on the definition, VAC is related to the MSD as 6⟨V (∆t)·V (0)⟩ = ∂2⟨∆R2(∆t)⟩/∂∆t2.
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Figure 2.4: Velosity autocorrelation function of the target particle with the various M/m and ρσ3

within the parameter regime M ≤ 1 and ρσ3 ≥ 1.
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Figure 2.5: Correlation factor between the velocities before and after a single collision γ1, defined

as Equation (2.3), as a function of the scaled mass of the target particle M/m with two different

gas densities ρd3 = 1 and 100. Symbols represent the simulation results, and the theoretical result

defined as Equation (2.16) is also displayed using a solid curve for comparison.

Therefore, the negative correlation in VAC corresponds to the inflection point, which corresponds

to sub-diffusive behavior, in MSD. Also, from Figures 2.3(a) and (b), the sub-diffusive regime

occurs at the timescale where the NGP has a significant peak. Thus, it is expected that the sub-

diffusive behavior in MSD and strong peak in NGP would be attributed to the observed negative

velocity correlation. The following analyses focus on the observed negative correlation in VAC.

2.3.2 Focusing on Collision Dynamics

It would be suspected that the negative velocity correlation can appear by the single collision when

the target particle mass is sufficiently small compared with the surrounding gas particle since the

gas particle behaves like a fixed obstacle in a short timescale where the target particle suffers a

few collisions. However, this naive expectation is not valid. Here, the velocity correlation before
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Figure 2.6: Correlation factor for the velocities before and after nth collisions of the target particle

for the parameter regime M/m ≤ 1 and ρd3 ≥ 1, obtained from the simulations.

and after a single collision is defined:

γ1 ≡
⟨Vc,i · Vc,i+1⟩coll

⟨V 2
c,i⟩coll

(2.3)

where Vc,i denotes the velocity of the target particle before the ith collision, and ⟨x⟩coll the statistical
average of a variable x with respect to collisions. Figure 2.5 shows the simulation results for

γ1 against scaled mass M/m with two scaled number densities ρd3 = 1 and 100, defined as

Equation (2.3). γ1 is always positive for any mass ratio, including small mass or large number

density cases. This result indicates that the velocity can not be negatively correlated by a single

collision. Fortunately, γ1 can be theoretically calculated, and the theory is perfectly consistent with

the simulation results. The detail of the theoretical calculation for γ1 is given in Appendix 2.A.

The velocity of the target particle is positively correlated via a single collision for any mass

ratio, while the VAC can exhibit negative correlations for the small M/m cases. This result

suggests that the target particle velocity is negatively correlated through multiple collisions. The

correlation factor that can describe the velocities before and after the nth collision is here defined
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Figure 2.7: Simulation results for the self and distinct parts of the velocity correlation before and

after nth collision γn, defined as Equations (2.6) and (2.7), at the target particle mass M/m = 0.01

and the gas number density ρd3 = 100.

as

γn ≡ ⟨Vc,i · Vc,i+n⟩coll
⟨V 2

c,i⟩coll
(2.4)

This factor has been introduced by Taloni et al. [86] to investigate the velocity correlation with

respect to collision number and would be useful for the current purpose. Figure 2.6 displays

the representative γn against the number of collisions with the parameter regime M/m ≤ 1 and

ρd3 ≥ 1. From the results, γ1 is not negatively correlated, as shown in Figure 2.5. Interestingly, γ2

does not show the negative value for simulated M/m, while the negative correlation emerges for

the number of collisions greater than or equal to 3. Taloni et al. [86] also obtained a similar result

for the two-dimensional hard-sphere fluid, although the origin of the negative correlation of γn at

n ≥ 3 was not clarified.

The number three would relate to the collision of the target particle with the same gas particle;

the process where the target particle first collides with a gas particle, leaves for the first particle

due to the collision rule (Equations (2.1) and (2.2)), then collides with another particle, and go

back to the first particle requires three collisions at least. To distinguish the contribution from the

collision with the same particle and other particles to the negative correlation of the velocity, γn
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is decomposed into self and distinct parts, γ
(s)
n and γ

(d)
n , as follows.

γn ≡ γ(s)
n + γ(d)

n , (2.5)

γ(s)
n ≡

⟨Vc,i · Vc,i+nδKi+1,Ki+n
⟩coll

⟨V 2
c,i⟩coll

, (2.6)

γ(d)
n ≡

⟨Vc,i · Vc,i+n(1− δKi+1,Ki+n
)⟩coll

⟨V 2
c,i⟩coll

, (2.7)

where δ denotes the Kronecker delta, and Ki indicates the gas particle number at the ith collision.

Figuere 2.7 displays γ
(s)
n and γ

(d)
n for the parameter M/m = 0.01 and ρd3 = 100, and γn is also

presented for comparison. γ
(d)
n becomes 0 at n = 1 due to the definition of Equation (2.7), and γ

(s)
n

shows 0 at n = 2 since the target particle can not collide with the same gas particle for the second

collision. Intriguingly, γ
(s)
n exhibits the negative correlation for n ≥ 3, and this result indicates

that the origin of the negative velocity correlation originates from the collisions with the same gas

particle.

2.4 Discussion

A similar negative value in the velocity autocorrelation function (VAC) is also observed in the

hard-sphere systems [79, 87]. Alder et al. [79] studied the dynamics of a target particle situated

in the hard-sphere fluids using the event-driven type algorithm [76]. They calculated the velocity

autocorrelation function of the target particle with various mass ratios and presented the difference

in the numerical data from the Enskog theory [11], which is a conventional theory for gas systems.

The result indicated that the velocity of the target particle is negatively correlated when the mass

of the target particle is smaller than that of the fluid particles, while the origin of this behavior

is not clarified. Although there is a difference between the current system and that in the prior

work, [79], the negative correlation of a lightweight particle in the hard-sphere fluids may be

attributed to the collisions with the same fluid particle, as clarified in the current work.

This chapter clarifies the origin of the large peak observed in Figure 2.3 for small M and large

ρ regime, however, NGP also exhibits non-negligible peaks even when the number density of gas

is not large, as displayed in Figure 2.1. Similar behavior is also observed for the hard-sphere gas

composed of identical particles [88] and Lennard-Jones liquid [89], although its origin has not been

elucidated. Such a non-Gaussianity observed in dilute situations is investigated in Chapter 3 and

4.
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2.5 Summary

This Chapter investigated the dynamics of the target particle immersed in the ideal gas composed

of point masses, varying the target particle mass M and number density of the ideal gas ρ. For large

target particle mass M/m ≥ 1, the dynamics of the target particle can be approximately regarded

as the Gaussian process; the dynamics is described using the Langevin equation. In contrast,

when the target particle mass is small M/m ≤ 1, the statistics of the displacement deviate from

the Gaussian distribution as expected. Intriguingly, for M/m ≤ 1 and ρd3 > 1, MSD exhibits

the sub-diffusion, NGP shows strong non-Gaussianity, and negative velocity correlation appears in

VAC. To clarify this complex diffusion, analyses focusing on collisions between the target and gas

particles were conducted. As a consequence, the observed non-Gaussian and anomalous diffusion

originates from repeated collisions with the same gas particle.

2.A Theretical Analysis for γ1

In this appendix, the correlation factor γ1, defined as Equation (2.3), is analytically calculated.

The velocities before and after a single collision are denoted as Vc,0 and Vc,1, respectively. The

velocity of the colliding gas particle is represented as vc,0. The current system is in an equilibrium

state; the ideal gas particles are uniformly distributed in space, and the velocities of target and gas

particles follow the Maxwell-Boltzmann distribution. Based on this situation, γ1 is analytically

computed.

The velocity of the target particle after the collision is obtained from the conservation of the

momentum and energy, as described in Equation (2.1). γ1 is calculated as the statistical average

of the inner product between the velocities before and after the collision as follows:

⟨Vc,1 · Vc,0⟩coll =
∫
dVc,0dvc,0duc,0PMB(Vc,0;M)PMB(vc,0;m)P (uc,0)|vc,0 − Vc,0|Vc,1 · Vc,0∫

dVc,0dvc,0duc,0PMB(Vc,0;M)PMB(vc,0;m)P (uc,0)|vc,0 − Vc,0|
, (2.8)

where ⟨x⟩coll denotes the statistical average of a variable x with respect to collisions. PMB(V ;M)

and PMB(v;m) are the Maxwell-Boltzmann velocity distributions:

PMB(V ;M) =

(
βM

2π

)3/2

exp

(
−βMV 2

2

)
, (2.9)

PMB(v;m) =

(
βm

2π

)3/2

exp

(
−βmv2

2

)
. (2.10)
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P (uc,0) is the probability density of the direction vector from the target particle to the colliding gas

particle at collision, and |vc,0−Vc,0| comes from the consequence that the collision frequency is pro-

portional to the relative speed between the target particle and gas particle. From Equations (2.8)

and (2.1), γ1 becomes

γ1 = 1 +
2m

M +m

∫
dVc,0dvc,0duc,0 PMB(Vc,0;M)PMB(vc,0;m)P (uc,0)|vc,0 − Vc,0|uc,0 · (vc,0 − Vc,0)uc,0 · Vc,0∫

dVc,0dvc,0duc,0PMB(Vc,0;M)PMB(vc,0;m)P (uc,0)|vc,0 − Vc,0|V 2
c,0

.

(2.11)

Introducing the total mass mt = M + m, reduced mass mr = Mm/mt, relative velocity vrel =

vc,0 − Vc,0, and center of mass velocity vcent = (MVc,0 +mvc,0)/mt, Equation (2.11) reduces to

γ1 = 1 +
2m

M +m

∫
dvreldvcentduc,0P (uc,0)|vrel|(uc,0 · vrel)uc,0 ·

(
vcent −

mvrel

mt

)
exp

[
−β(mtv

2
cent +mrv

2
rel)

2

]
∫

dvcentdvrelduc,0 P (uc,0)|vrel|
(
vcent −

mvrel

mt

)2

exp

[
−β(mtv

2
cent +mrv

2
rel)

2

]
(2.12)

The integrand of the denominator of the second term on the right-hand side of Equation (2.12) is

independent of uc,i. Therefore, the integration is straightforwardly performed as follows.∫
dvcentdvrelduc,0 P (uc,0)|vrel|

(
vcent −

mvrel

mt

)2

exp

[
−β(mtv

2
cent +mrv

2
rel)

2

]
=

∫
dvcentdvrel|vrel|

(
vcent −

mvrel

mt

)2

exp

[
−β(mtv

2
cent +mrv

2
rel)

2

]
=π3/2

(
2

β

)9/2
(

3

m
5/2
t m2

r

+
4m2

m
7/2
t m3

r

)
.

(2.13)

For the calculation of the numerator of the second term on the right-hand side of Equation (2.12),

an appropriate spherical coordinate is employed so that the relative velocity and direction vector

are described as vrel = (0, 0, vrel) and uc,0 = (sin θ cosϕ, sin θ sinϕ, cos θ), respectively. In this

coordinate, the target particle is fixed at the origin, and the colliding gas particle moves along the

vector parallel to vrel = (0, 0, vrel), and the probability density of uc,0 is simply obtained from the

geometrical considerations:

P (uc,0) ∝ sin θ cos θΘ[cos θ]. (2.14)

where Θ represents the Heaviside step function, implemented to preclude physically impossible

collisions. Using P (uc,0), the numerator in Equation (2.12) is calculated as follows.∫
dvcentdvrelduc,0P (uc,0)|vrel|(uc,0 · vrel)uc,0 ·

(
vcent −

mvrel

mt

)
exp

[
−β(mtv

2
cent +mrv

2
rel)

2

]
=− 2π3/2

(
2

β

)9/2
m

m
5/2
t m3

r

.

(2.15)
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Combining Equations (2.8), (2.11), and (2.15), γ1 is obtained as

γ1 =
3M

3M + 4m
, (2.16)

which does not become a negative value for any M .



Chapter 3

Fluctuating Diffusivity of Particle in Gas

Mixtures: Numerical Study

Abstract

Dynamics of the binary gas mixture, where the fraction of one component is tiny, is numerically

examined with various mass ratios. In this gas system, the minor particle exhibits fluctuating dif-

fusivity, causing the Brownian yet non-Gaussian diffusion, when the minor particle is significantly

lighter than that of the major particle. The observed fluctuating diffusivity originates from an

origin, which has not been reported: the gap of the relaxation timescales between the velocity

direction and speed.

3.1 Introduction

In 2009, a novel type of diffusion, termed Brownian yet non-Gaussian diffusion, was experimentally

reported by Wang et al. [18]. Their investigations into colloidal particles moving along phospholipid

bilayer tubes and diffusing within F-actin networks revealed that, although the mean squared

displacement of the particles is proportional to time, the self-part of the van-Hove correlation

function deviates from the Gaussian distribution. Since non-Gaussian diffusion was traditionally

thought to occur with anomalous diffusion, the discovery by Wang et al. triggered the study

of Brownian yet non-Gaussian diffusion from both experimental and theoretical sides. Following

this discovery, Brownian yet non-Gaussian diffusion has been observed in various complex systems,

including glass-forming liquids [42,90], colloidal suspensions [41,91] biological systems [18,26,27,85],

38
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active matter [92,93], and polymeric systems [24].

The Brownian yet non-Gaussian diffusion can be theoretically described using fluctuating dif-

fusivity, which incorporates the effect of a diffusion coefficient that stochastically changes over

time [24, 94–96]. It can be expressed through an over-damped Langevin equation with the fluctu-

ating diffusion coefficient D(t) as follows:

Ṙ =
√
2D(t)ξ(t), (3.1)

where R(t) is the position of the target particle, and ξ(t) the Gaussian white noise. The first

and second moments of ξ(t) satisfy ⟨ξ(t)⟩ = 0 and ⟨ξ(t) · ξ(t′)⟩ = 1δ(t − t′), respectively. The

stochastic process of the particle (Equation (3.1)) is determined if the stochastic process of D(t)

is provided [24,42,94,96].

The origins of the observed fluctuating diffusivity can be classified into two mechanisms. The

first pertains to the temporal/spatial environmental heterogeneity; particle mobility changes due

to the heterogeneous nature of the environment. This mechanism manifests in cases where particles

are immersed, for instance, in glass-forming liquids [17,90], dense active matter [92,93], biological

systems [18, 26, 27, 85], or colloidal suspensions [41, 91]. The second origin is attributed to the

internal degrees of freedom of the particles; in cases where the particle has a number of degrees

of freedom, the particle conformation/orientation slowly varies, and the center of mass of particle

diffusivity depends on the slow dynamics and fluctuates. This mechanism appears in entangled

polymers, polymer solutions [24, 96], and rod-like particle solutions [25]. As such, it has been

considered that the origins of fluctuating diffusivity are the fluctuations in the degrees of freedom

related to the position of either the surrounding fluid molecules or the particles themselves.

In classical mechanics, the dynamics of particles depends not only on position but also on

velocity. This raises a question: Is the fluctuating diffusivity solely attributable to the degrees

of freedom concerning the position, such as temporal/spatial environmental heterogeneity or fluc-

tuations in the internal degrees of freedom of the target particle? This chapter presents a new

third origin of fluctuating diffusivity related to particle velocity by examining a simple gas system.

Specifically, binary-gas mixtures where one component has a significantly small fraction are con-

sidered. All the gas particles are spherical in shape. Because the system is a gas state, there is no

temporal/spatial environmental heterogeneity, and due to its spherical nature, there are no large

number of internal degrees of freedom; the fluctuating diffusivity related to positional degrees of

freedom cannot occur in this system. Nonetheless, this study demonstrates that the fluctuating

diffusivity, which causes Brownian yet non-Gaussian diffusion, can manifest, thereby reporting a
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previously undocumented origin. Further, the novel third origin is phenomenologically elucidated

based on the simulation results.

3.2 Method

3.2.1 System Setting

The current system consists of a single molecule situated in the other gas molecule (hereafter called

the minor and major molecule, respectively), which can be regarded as the model system for the

binary gas mixture with the fraction of one component being tiny. The system is in an equilibrium

state, and the inverse temperature is β. The mass of the minor molecule is M , and that of the

major molecule is m. The diameter of the minor molecule is d1, and that of the major molecule

is d2. The thermodynamic limit is considered: the system volume and number of particles are

infinite while keeping the number density of the major molecule at ρ. The minor molecule moves

ballistically until it collides with a major molecule. If the interparticle interaction between the

minor and major molecule is the hard-core potential, the velocity of the minor molecule before

and after a collision are related as follows:

Vc,i+1 = Vc,i −
2M

m+M
(Vc,i+1 − vc,i) · uc,iuc,i. (3.2)

where Vc,i is the minor molecule velocity before ith collision, and vc,i the colliding major molecule

velocity at the ith collision. uc,i means the unit vector connecting the minor molecule to the

colliding major molecule.

In gas systems, the dynamics of the constituent particles can be approximately described using

the Markovian stochastic process since the dynamics of the particles are not strongly correlated

[11, 45]. Such an approximation is traditionally approved for the gas kinetic theory if the interest

is not long-time tails in time correlation functions for some time-dependent variables. Upon the

approximated description, the kinetic Monte Carlo (KMC) method can be employed to calculate

the dynamics of the minor molecule situated in the major gas molecule. For implementing the

KMC method, the collision statistics when and where the minor molecule collides with a major

molecule is required. Such statistics, which can be the direct input into the KMC method, have

not been calculated so far.
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3.2.2 Collision Statistics

The required statistics is the probability density where the minor molecule for a given Vc,i collides

with the major molecule having vc,i at uc,i with a free time ∆tc,i, P (vc,i,uc,i,∆tc,i|Vc,i), which is

obtained based on the two assumptions;

1. The dynamics of minor molecule obey a Markovian stochastic process.

2. All the major molecule are always under an equilibrium state; the positions are uniformly

distributed, and the statistics of velocity obey the Maxwell-Boltzmann distribution as follows:

PMB(v;m) =

(
βm

2π

)3/2

exp

(
−βmv2

2

)
(3.3)

From the first and second assumptions, the collision frequency at which the minor molecule with

Vc,i collides with a major molecule with velocity vc,i is expressed as follows:

ρd2(Vc,i − vc,i) · uc,iΘ[(Vc,i − vc,i) · uc,i] (3.4)

where d = (d1 + d2)/2 denotes the average of the diameters of the minor and major molecule, and

Θ means the Heaviside step function, which can eliminate the collision at (Vc,i − vc,i) · uc,i < 0.

P (vc,i,uc,i,∆tc,i;Vc,i) can be interpreted as the product of the three factors; the first factor is

the cumulative probability for the time interval of the target minor molecule for a given Vc,i, the

second factor is the probability density of the velocity of the colliding major molecule, and the

third factor is the collision frequency of the minor molecule at the time interval ∆tc,i. For the

calculation of the first factor, the probability density of ∆tc,i is required:

P (∆tc,i|Vc,i) = ν̄(Vc,i) exp[−ν̄(Vc,i)∆tc,i], (3.5)

where ν̄(Vc,i) is the averaged collision rate of the minor molecule for a given Vc,i as follows:

ν̄(Vc,i) =

∫
dvc,i

∫
duc,i ρd

2(vc,i − Vc,i) · uc,iΘ[(vc,i − Vc,i) · uc,i]PMB(vc,i;m)

=
ρπd2
√
χ

[(
√
χ|Vc,i|+

1

2
√
χ|Vc,i|

)
erf(

√
χ|Vc,i|) +

1√
π
exp

(
−χ|Vc,i|2

)]
,

(3.6)

where χ = βm/2, and erf is the error function. The first factor is the probability that the minor

molecule for a given Vc,i does not collides with any major molecule for a time interval ∆tc.i, which

is obtained as

Ψ(∆tc,i|Vc,i) =

∫ ∞

∆tc,i

d∆t′c,iP (∆t′c,i|Vc,i) = exp[−ν̄(Vc,i)∆tc,i] (3.7)
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The second and third factors are just described as Equations (3.3) and (3.4), respectively, due to the

first and second assumptions. Combining Equations (3.4), (3.3), and (3.6), P (vc,i,uc,i,∆tc,i|Vc,i)

is obtained as follows:

P (vc,i,uc,i,∆tc,i|Vc,i) = ρd2(Vc,i − vc,i) · uc,iΘ[(Vc,i − vc,i) · uc,i]Ψ(∆tc,i|Vc,i)PMB(vc,i;m) (3.8)

3.2.3 Kinetic Monte Carlo Method

In the Markovian nature, the dynamics of the minor molecule can be calculated based on Equa-

tions (3.2) and (3.8) using the kinetic Monte Carlo (KMC) method. The KMC method, initially

developed for chemical reactions [97] and the Ising model [98], has since been applied to various

other systems [99]. This work first extends the KMC method to treat the gas diffusion based on

the collision statistics.

The initial velocity of the target particle Vc,1 is sampled from the Maxwell-Boltzmann distri-

bution:

PMB(Vc,1;M) =

(
βM

2π

)3/2

exp

(
−
βMV 2

c,1

2

)
(3.9)

Since Equation (3.9) is just the Gaussian distribution, the initial velocity is stochastically sampled

using the Box-Muller method. For the time development of the dynamics of the minor molecule, the

collision time interval ∆tc,i, velocity of a colliding major molecule vc,i, and the direction unit vector

at collision uc,i are sampled from Equation (3.8). Meanwhile, simultaneous sampling is technically

difficult, and Equation (3.8) is decomposed into several conditional probability densities as follows.

P (vc,i,uc,i,∆tc,i|Vc,i) = P (uc,i|vc,i,∆tc,i,Vc,i)P (vc,i|∆tc,i,Vc,i)P (∆tc,i|Vc,i) (3.10)

where each P (uc,i|vc,i,∆tc,i,Vc,i), P (vc,i|∆tc,i,Vc,i), and P (∆tc,i|Vc,i) are obtained as follows.

P (∆tc,i|Vc,i) =

∫
dvc,i

∫
duc,iP (vc,i,uc,i,∆tc,i|Vc,i) = ν̄(Vc,i) exp(−ν̄(Vc,i)∆tc,i) (3.11)

P (vc,i|∆tc,i,Vc,i) =

∫
duc,i

P (vc,i,uc,i,∆tc,i|Vc,i)

P (∆tc,i|Vc,i)
=

ρπd2|Vc,i − vc,i|PMB(vc,i;m)

ν̄(Vc,i)
(3.12)

P (uc,i|vc,i,∆tc,i,Vc,i) =
P (vc,i,uc,i,∆tc,i|Vc,i)

P (vc,i|∆tc,i,Vc,i)P (∆tc,i|Vc,i)

=
(vc,i − Vc,i) · uc,i

π|vc,i − Vc,i|
Θ[(vc,i − Vc,i) · uc,i]

(3.13)

From Equations (3.11), (3.12), and (3.13), ∆tc,i, vc,i, and uc,i are sampled. Since Equation (3.11)

is the exponential function, ∆tc,i is straightforwardly sampled using the inversion method. Here,
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sampling vc,i is relatively complicated because it is a vector with three components. For this

calculation, Equation (3.12) is expressed using the relative velocity vr = vc,i − Vc,i with the

spherical coordinates vr, θ ∈ [0, π], and ϕ ∈ [0, 2π): vr = vr cosϕ sin θx̂+ vr sinϕ sin θŷ + vr cos θẑ

with x̂, ŷ, and ẑ being the orthogonal basis vectors in the Cartesian coordinate. Without loss of

generality, ẑ is set as ẑ = Vc,i/|Vc,i|. In this spherical coordinate, Equation (3.12) is displayed as

P (vr, θ, ϕ|∆tc,i,Vc,i) =
ρπd2v3r sin θ

ν̄(Vc,i)

(
βm

2π

)3/2

exp

[
−βm(v2r + |Vc,i|2 + vr|Vc,i| cos θ)

2

]
(3.14)

Since Equation (3.14) does not include ϕ, ϕ is sampled from the uniform distribution for the

range ϕ ∈ [0, 2π). The conditional probability density of vr is obtained as the integration of

Equation (3.14) over θ and ϕ as follows:

P (vr|∆tc,i,Vc,i) =

∫
dθ

∫
dϕP (vr, θ, ϕ|∆tc,i,Vc,i)

=

[(
βm

2π

)3/2
4πρπd2 sin θ

|Vc,i|ν̄(Vc,i)
exp

(
−βm|Vc,i|2

2

)]
v2r exp

[
−βmv2r

2

]
sinh (|Vc,i|vr)

(3.15)

From Equation (3.15), vr is sampled using the rejection method. The conditional probability

density of θ is represented as

P (θ|vr, ϕ,∆tc,i,Vc,i) =

∫
dϕ

P (vr, θ, ϕ|∆tc,i,Vc,i)

P (vr|∆tc,i,Vc,i)

=

[
|Vc,ivr|

2 sinh (|Vc,i|vr)

]
sin θ exp(−vr|Vc,i| cos θ)

(3.16)

θ is sampled from Equation (3.16) by the inversion method. Combining vr, θ, and ϕ, vc,i is

obtained. Also for sampling uc,i from Equation (3.13), the spherical coordinate with θ′ ∈ [0, π]

and ϕ′ ∈ [0, 2π) is employed: uc,i = cosϕ′ sin θ′x̂′+sinϕ′ sin θ′ŷ′+cos θ′ẑ′ with x̂′, ŷ′, and ẑ′ being

the orthogonal basis vectors and x̂′ set along ẑ′ = vr/|vr|. In this coordinate, Equation (3.13) is

expressed as

P (θ′, ϕ′|vc,i,∆tc,i,Vc,i) =
1

π
cos θ′ sin θ′Θ[vr cos θ

′] (3.17)

Since Equation (3.17) is independent of ϕ′, ϕ′ is sampled from the uniform distribution ranged

ϕ′ ∈ [0, 2π). From Equation (3.17), The probability density of θ is obtained by the integration

over ϕ′ as

P (θ′|vc,i,∆tc,i,Vc,i) =

∫
dϕ′P (θ′, ϕ′|vc,i,∆tc,i,Vc,i) = 2 cos θ′ sin θ′Θ[vr cos θ

′] (3.18)
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From Equation (3.18), θ′ is sampled from the inversion method. The unit vector uc,i at collision

is constructed from the obtained θ′ and ϕ′.

Based on the collision statistics P (vc,i,uc,i,∆tc,i|Vc,i) and the rule of the velocity change (Equa-

tion (3.2)), the dynamics of the minor molecule is calculated as follows:

1. The initial velocity is sampled from the Maxwell-Boltzmann distribution, as described in

Equation (3.9).

2. The collision time interval, ∆tc,i, the velocity of the colliding major molecule, vc,i, and the

direction unit vector connecting from the minor molecule to the colliding major molecule,

uc,i are sampled based on the collision statistics P (vc,i,uc,i,∆tc,i|Vc,i), using each conditional

probability densities.

3. The velocity of the minor molecule changes using vc,i and uc,i, based on Equation (3.2).

From this algorithm, the time sequence of the velocity of the minor molecule is obtained, as il-

lustrated in Figure 3.1. The position of the minor molecule at time t, R(t), are straightforwardly

produced from the time sequence of the velocities {Vc,i}. Based on this algorithm, the following re-

sults are obtained. Here, it should be emphasized that the collision statistics P (vc,i,uc,i,∆tc,i|Vc,i)

is independent of the particle position and time. Thus, the environment surrounding the target

minor molecule is always statistically homogeneous; environmental heterogeneity, one of the ori-

gins of the fluctuating diffusivity, can not occur in the current system. In the current system, if

the mass of the major molecule, m, the inverse temperature, β, and a characteristic length ρd2 are

chosen to define the dimensionless units, the dynamics of the minor molecule depends only on the

mass of the minor molecule, M , while the following variables are displayed with the dimensions

for the physical clarity.

3.3 Results

3.3.1 Fluctuating Diffusivity in Gas

Figure 3.2 displays the mean square displacement of the minor molecule defined as ⟨∆R(∆t)2⟩,
where ∆R(∆t) is the displacement for the time lag ∆t as ∆R(∆t) = R(∆t)−R(0). For compar-

ison, the prediction by the Enskog theory [9, 79] is also plotted:

⟨∆R(∆t)2⟩ = 6τ 2MSD

βM

[
−1 +

∆t

τMSD

+ exp

(
− ∆t

τMSD

)]
, (3.19)
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collision 1 collision 2 collision 3 collision 4

Figure 3.1: Schematic illustration of the time development of the particle velocity Vc,i. The minor

molecule collides with a major molecule with the velocity vc,i at the direction uc,i for the collision

time interval ∆tc,i.

Figure 3.2: Mean square displacement of the minor molecule with various mass ratios M/m. The

symbols describe the result from the KMC simulations, and the black curves are the predictions

of the Enskog theory (Equation (3.19)).
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where τMSD is the crossover time from the ballistic ⟨∆R(∆t)2⟩ ∝ ∆t2 to the diffusive ⟨∆R(∆t)2⟩ ∝
∆t1 regimes defined as

τMSD =
3

8ρd2

√
βM(m+M)

2πm
. (3.20)

The results from the KMC simulations show simple ballistic and diffusive behaviors for any mass

ratio M/m. These behaviors are almost perfectly consistent with Equation (3.19).

Although the mean square displacement of the minor molecule is simple, the trajectory of the

minor molecule shows intriguing behavior. Figure 3.3 displays the representative trajectories of the

minor molecule for the large and small mass ratios, M/m = 102 and 10−4. The observation time

is T = 106τMSD, and the three-dimensional trajectories are projected onto the two-dimensional

XY plane for visibility. The color of the trajectories means the magnitude of the displacement

scaled by the root of the mean square displacement for a time lag ∆t = 10τMSD. When the minor

molecule is heavy M/m = 102, the fast (red) and slow (blue) parts are homogeneously distributed,

and it is the simple Brownian motion where the diffusion coefficient is constant. Meanwhile, when

the minor molecule is lightweight M/m = 10−4, large clusters of fast and slow areas appear. This

result suggests that the dynamics of the minor molecule are not simple when M/m is small. In

the following, the results are displayed for the typical mass ratios M/m = 102 and 10−4 as the

representative instances for the simple and unusual diffusion, respectively. Data for other mass

ratios are summarized in Appendix 3.A.

To examine the heterogeneous dynamics shown in Figure 3.3, the self-part of the van-Hove

correlation functions, defined as Gs(∆X,∆t) = ⟨δ[∆X − (X(t + ∆t) −X(t))]⟩ with X being the

position of the minor molecule along x axis, are computed. Figure 3.4 shows Gs(∆X,∆t) with the

various scaled time lag ∆t/τMSD for the large and small mass ratios M/m =(a)102 and 10−4. If

the particle mass is heavy (M/m = 102), Gs(∆X,∆t) is almost the Gaussian distribution for the

simulated ∆t. In contrast, when the minor molecule is lightweight (M/m = 10−4), Gs(∆X,∆t)

deviates from the Gaussian distribution within the intermediate time lag 101 ≲ ∆t/τMSD ≲ 104,

while Gs(∆X,∆t) converges to the Gaussian distribution for a long time scale ∆t/τMSD ≳ 105.

Intriguingly, for M/m = 10−4, the deviation from the Gaussian distribution occurs at the timescale

where the mean square displacement exhibits the normal diffusion as shown in Figure 3.2. Similar

behaviors are also observed for the other small mass cases, M/m < 1, as displayed in Figure 3.9

in Appendix 3.A. These results indicate that the Brownian yet non-Gaussian diffusion emerges

even in the gas system composed of spherical particles, which do not essentially have any het-

erogeneous environments and a large number of internal degrees of freedom. To characterize the
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(a)

(b)

Figure 3.3: Trajectories of minor molecule during the observation time T = 106τMSD with the mass

ratios M/m = (a) 102 and (b) 10−4, obtained from the KMC simulations. The three-dimensional

dynamics is projected onto the XY plane. The color indicates the displacement scaled by the

mean square displacement with |R(∆t)−R(0)|/
√
⟨∆R2(∆t)⟩ with ∆t set to be 10τMSD.
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Figure 3.4: Self-part of the van-Hove correlation functions of the minor molecule, defined as

Gs(∆X,∆t) = ⟨δ[∆X − (X(t + ∆t) − X(t))], obtained from the KMC simulations. The repre-

sentative mass ratios M/m = (a)102 and (b)10−4 for the various scaled time lag ∆t/τMSD are

displayed. For comparison, the horizontal axes are scaled using the root of mean square displace-

ment
√

⟨∆X2(∆t)⟩, and the Gaussian distribution is also displayed by the black curve.
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E
B

Figure 3.5: Ergodicity breaking (EB) parameters against the scaled observation time T/τMSD

with the representative minor molecule masses, M/m = 102 and 10−4, obtained from the KMC

simulations. The time lag is set to be ∆t/τMSD = 10. The dotted lines are the fitting results with

the power exponent functions EB ∝ T−κ and T−1 for the short and long time scales, respectively.

non-Gaussianity, the non-Gaussian parameter [89], defined as ⟨3∆R4(∆t)⟩/⟨5∆R2(∆t)⟩2 − 1, is

often analyzed. The non-Gaussian parameter becomes 0 when Gs(∆X,∆t) is the Gaussian distri-

bution, while it deviates from 0 for the non-Gaussian distribution. As displayed in Figure 3.10,

the non-negligible deviations of the non-Gaussian parameter from 0 are observed when the mass

ratio is small (M/m < 1).

The Brownian yet non-Gaussian diffusion has been considered to be attributed to the temporal

change of the diffusion coefficient of the particle, called the fluctuating diffusivity. To characterize

the fluctuating diffusivity, the following ergodicity breaking parameter is often computed:

EB(∆t, T ) =

〈[
δ̄2(∆t, T )

]2〉〈
δ̄2(∆t, T )

〉2 − 1, (3.21)

where δ̄2(∆t, T ) expresses the time-averaged mean square displacement for the time lag ∆t with

the observation time T , defined as

δ̄2(∆t, T ) =
1

T −∆t

∫ T−∆t

0

[R(t+∆t)−R(t)]2dt. (3.22)

For T ≫ ∆t, the dependence of the EB parameter on ∆t was theoretically proven to be weak [24].

In the current work, the time lag is set to be ∆t/τMSD = 10, and EB parameter is calculated



CHAPTER 3. FD OF PARTICLE IN GAS MIXTURES: NUMERICAL STUDY 50

Figure 3.6: Time-correlation function of the velocity direction Cd(∆t) and speed Cs(∆t), defined

as Equation (3.23) and (3.24), respectively. The data for the representative mass M/m = 102 and

10−4 are calculated by the KMC simulations.

for the observation time T/τMSD ≥ 102, which is larger than the time lag. Figure 3.5 shows the

EB parameter against the scaled observation time T/τMSD with the representative mass ratios.

For the large mass M/m = 102, the EB parameter decays as EB ∝ T−1. This result means

that the dynamics of the minor molecule is just the Gaussian process. Meanwhile, when the

minor molecule is lightweight (M/m = 10−4), the EB parameter exhibits shoulder before the

timescale of Gaussian decay EB ∝ T−1. Similar behaviors are also observed for other small mass

cases M/m < 1, as displayed in Figure 3.11 in Appendix 3.A. From Equation (3.21), the EB

parameter can be interpreted as the variance of the diffusion coefficient for the diffusive time

regime ∆t/τMSD ≫ 1. Thus, the observation of the shoulder in the EB parameter means the

emergence of fluctuating diffusivity. The crossover time scale from the shoulder to the Gaussian

decay, τEB, can be interpreted as the characteristic timescale of the fluctuating diffusivity. τEB/τMSD

can be roughly estimated as τEB/τMSD ∼ 104 from the cross point of the two power exponent fitting

functions EB ∝ T−κ with κ ∈ [0, 1) and T−1 at the short and long time regimes, respectively. The

timescale τEB/τMSD ∼ 104 is approximately equal to the timescale where the van-Hove correlation

function G(∆X,∆t) approaches Gaussian distribution as shown in Figure 3.4(b). Also, the large

fluctuation of the displacement observed in Figure 3.3 can be interpreted as the emergence of the

fluctuating diffusivity.
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Figure 3.7: Relaxation times of the velocity direction τd and speed τs of the minor molecule as a

function of mass ratio M/m, defined in Equations (3.25), obtained from the KMC simulartions.

The horizontal axis is scaled by τMSD. For comparison, the crossover timescales of the ergodicity

breaking parameter τEB, calculated using the curve fittings, are also displayed.
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3.3.2 Origin of Fluctuating Diffucivity

In the results above, the fluctuating diffusivity is observed for a timescale longer than τMSD, even

in the gas systems. The current system does not have any heterogeneous nature and a large

number of internal degrees of freedom, which are the known origins for the fluctuating diffusivity.

A novel mechanism should be considered to elucidate the origin of the fluctuating diffusivity in the

gas system. When the mass of the minor molecule is sufficiently smaller than that of the major

molecule, M/m ≪ 1, the speed of the minor molecule is statistically larger than that of the major

molecule due to the Maxwell-Boltzmann velocity distribution (Eqaution (3.9)), i.e., |V | ≫ |v|.
In this condition, the motion of the minor molecule seems to be that in immobile obstacles like

a Lorentz gas system [69, 71, 100] within a short timescale. In such a case, the direction of the

velocity is randomized via a single collision, while the speed of the minor molecule is almost

unchanged. From this consideration, it is expected that the relaxation time of the minor molecule

speed is sufficiently larger than that of the direction of the velocity. This slow relaxation of the

speed is possibly related to the fluctuating diffusivity, which occurs in the timescale larger than

τMSD. Possible time-correlation functions of the velocity direction Cd(∆t) and speed Cs(∆t) are

the followings:

Cd(∆t) =

〈
V (∆t)

|V (∆t)|
· V (0)

|V (0)|

〉
, (3.23)

Cs(∆t) =
⟨|V (∆t)||V (0)|⟩ − ⟨|V |⟩2

⟨|V |2⟩ − ⟨|V |⟩2
. (3.24)

From the definitions, both functions Cd(∆t) and Cs(∆t) becomes 1 at the initial time, ∆t = 0,

and approaches 0 at ∆t → ∞. Figure 3.6 displays Cd(∆t) and Cs(∆t) against ∆t/τMSD with the

representative masses M/m from the KMC simulations. When the mass of the minor molecule

is large (M/m = 102), Cd(∆t) and Cs(∆t) decays with a similar timescale, ∆t/τMSD ∼ 1. This

means that both the velocity direction and speed of the minor molecule relaxes at the crossover

time τMSD in the mean square displacement. In contrast, for the small mass cases M/m = 10−4,

the relaxation time of Cs(∆t) is significantly larger than that of Cd(∆t). This result indicates

the speed of the minor molecule persists for a long timescale while the velocity direction rapidly

changes. Similar behaviors are commonly observed for the small mass cases, as represented in

Figures 3.12 and 3.13 in Appendix 3.A. Here, possible definitions of the relaxation timescales of
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Cd(∆t) and Cs(∆t), τd and τs, are the followings:

τd/s =

∫ ∞

0

d∆t∆tCd/s(∆t)∫ ∞

0

d∆t Cd/s(∆t)

(3.25)

From Equation (3.25), the relaxation times τd and τs are computed and shown in Figure 3.7, as

a function of the mass ratio M/m. For comparison, the crossover time of the ergodicity breaking

parameter, estimated from the curve fittings in Figure 3.11, is also displayed (clear crossover is

observed when the minor molecule mass is sufficiently small, M/m ≤ 10−3, and only such a data are

analyzed). Figure 3.7 shows that τd/τMSD is approximately 1 for the simulated M/ms. Meanwhile,

τs/τMSD becomes significantly large quantities at the small mass regime M/m ≪ 1. Intriguingly,

τs/τMSD at the small M/m regime is almost the same order against τEB. This result implies that

the fluctuating diffusivity observed in the current gas mixture is attributed to the slow relaxation

of the speed of the minor molecule.

The results presented suggest a plausible explanation for the observed fluctuating diffusivity

in the studied binary gas mixture, especially when the mass ratio of the minor molecule, M/m, is

significantly smaller than unity. Within the intermediate time scale defined as τd ≲ T ≲ τs, the

diffusion of the minor molecule occurs due to the random alterations in its velocity direction. In

this timescale, the speed of the minor molecule does not almost change, indicated by |V (t)| ≈ V ,

allowing for the representation of the diffusion coefficient as a constant function, expressed as

D(t) = D(V ). As the time scale extends to T ≳ τs, temporary fluctuations in D(t) emerge from

the variations in |V (t)|. When observing this long time scale, the fluctuation of the diffusivity is

averaged and then becomes less prominent, leading to the emergence of Gaussian normal diffusion

characterized by an effective diffusion coefficient, denoted as Deff = ⟨D⟩. The underlying cause

of the observed fluctuating diffusivity in the current system is attributed to the distinct timescale

separation in the relaxation timescales of the velocity direction and speed of the molecules. Fur-

thermore, this scenario accounts for the clusters depicted in Figure 3.3, which are indicative of the

slow relaxation of the speed of the minor molecule over the timescale τs.

To check the validity of the proposed model, a theoretical evaluation of the van-Hove corre-

lation function for the minor molecule under the condition M/m ≪ 1 is performed. During the

intermediate timescale τd ≲ T ≲ τs, the behavior of a minor molecule would be approximately

modeled as a moving particle in dilute fixed spherical obstacles. Here, the diffusion coefficient is

described using the speed |V (t)| as the expression D(|V (t)|) = |V (t)|/3πρd2 [11]. The displace-

ment probability density for the minor molecule within the timescale τd ≲ T ≲ τs, moving at speed
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11

Figure 3.8: Theoretical prediction for the scaled self-part of the van-Hove correlation function,

Gs(∆X,∆t), pertaining to minor molecule, represented by an ochre curve. This is compared

against the kinetic Monte Carlo (KMC) simulation results, demonstrated using distinct symbols

for varying time lags, under the condition M/m = 10−4, as displayed in Figure 3.4(b). Additionally,

for reference, the Gaussian distribution is depicted with a black curve.
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V = |V |, follows a Gaussian distribution.

P (∆X; ∆t|V ) =
1√

4πD(V )∆t
exp

(
− ∆X2

4D(V )∆t

)
. (3.26)

At equilibrium, the distribution of the minor molecule speed V follows the Maxwell-Boltzmann

distribution: PMB(V ) = 4πV 2(2π)−3/2 exp(−V 2/2). Integrating Equation (3.26) over V , consid-

ering its equilibrium distribution, yields the van-Hove correlation function Gs(∆X,∆t) for the

intermediate timescale τd ≲ ∆t ≲ τs:

Gs(∆X; ∆t) =

∫ ∞

0

dV P (∆X; ∆t|V )PMB(V ). (3.27)

Numerical calculation of Equation (3.27), depicted in Figure 3.4, reveals a reasonable concordance

with the results from the kinetic Monte Carlo (KMC) simulations for the intermediate timescale.

This supports the hypothesis that fluctuating diffusivity in this system is a consequence of different

relaxation timescales between velocity direction and speed. Deviations from Gaussian distribution

in Gs(∆X; ∆t), commonly observed in various systems, are evident. The non-Gaussian tail in

Equation (3.27) can be approximated using the saddle point method:

Gs(∆X; ∆t) =

√
3

4π

|∆X|
∆t

exp

[
−3

(
3∆X2

8
√
2∆t

) 2
3

]
(for ∆X ≫ 1). (3.28)

This result indicates that the tail behavior differs from the exponential or stretched Gaussian

distributions frequently observed in glass-forming liquids [17, 23, 101, 102] and certain biological

systems [26,27,92–94].

3.4 Discussion

The behavior of minor molecule, when its mass ratio is much smaller than that of the major

molecule (M/m ≪ 1), can be considered to be akin to the particle in the Lorenz gas model, as

detailed in several studies [11,71,103–105]. The Lorenz gas model is a well-studied dynamic model

representing a single gas particle moving among spatially fixed obstacles. In this model, only

the direction of the particle velocity changes, while its speed remains constant at any timescale.

Therefore, the fluctuating diffusivity observed in the current system does not emerge for the

conventional Lorenz gas systems.

The obtained results indicate that in situations where the difference in mass is significantly

large, M/m ≪ 1, fluctuating diffusivity can appear. Currently, there are no experimental studies
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documenting non-Gaussian behavior or fluctuating diffusivity in gaseous systems. However, it can

be speculated that such phenomena could be observed in experiments for binary gas mixtures. For

example, in a mixture of helium and radon [106], the mass ratio is approximately M/m ≈ 0.018.

In cases with this mass ratio, it is likely that Brownian yet non-Gaussian diffusion, which is a result

of fluctuating diffusivity, will occur, as demonstrated in Figure 3.10 in Appendix. It is anticipated

that this non-Gaussian behavior could be detected with detailed and accurate measurements.

While the kinetics of gases [9] are often thought to be well understood, this study suggests that

there may still be aspects that are not fully understood.

3.5 Summary

In this chapter, a new origin of fluctuating diffusivity was discovered. This origin is distinct from

previously known origins, such as environmental heterogeneity or changes in particle conformations.

The fluctuating diffusivity can emerge in simple binary gas mixtures with differences in mass and

fraction, particularly when the mass of the minor component is much smaller than that of the major

component. This study demonstrated that the fluctuating diffusivity results from the gap in the

relaxation time scales between the velocity direction and speed of the minor component molecule.

These findings will provide a novel path to model fluctuating diffusivity and fresh insights into

the kinetic behavior of gas systems. It is hoped that the non-Gaussian behavior and fluctuating

diffusivity predicted in this study will be verified through elaborate experiments.

3.A Additional Simulation Data

In Chapter 3, the simulation data are displayed only for the representative mass ratios M/m = 102

and 10
4
for visibility. The other mass ratio cases ranged from M/m = 10−4 to 102 are shown in this

Appendix 3.A. The self-part of the van-Hove correlation functions G(∆X,∆t) against displacement

with various time lags ∆t/τMSD are displayed in Figure 3.4. The non-Gaussian parameter against

time lag ∆t/τMSD with various mass ratios M/m are shown in Figure 3.10 The ergodicity breaking

(EB) parameters against the scaled observation time T/τMSD with various mass ratios are displayed

in Figure 3.11. The time-correlation functions of the velocity direction Cd(∆t) and speed Cs(∆t)

of the minor molecule, defined as Equations (3.23) and (3.24), are displayed in Figures 3.12 and

3.13, respectively, with the various mass ratios M/m.
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Figure 3.9: Self-part of the van-Hove correlation functions of the minor molecule with the mass

ratios M/m = (a)100, (b)10−1, (c)10−2, and (d)10−3 from the KMC simulations. The horizontal

axis is scaled using the root of mean square displacement
√
⟨∆X2(∆t)⟩. The black curves are

represented for comparisons with the simulation data.
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Figure 3.10: Non-Gaussian parameters of the minor molecule defined as

⟨3∆R4(∆t)⟩/5⟨∆R2(∆t)⟩2 − 1 with various mass ratios M/m, obtained from the KMC

simulations.

E
B

Figure 3.11: Ergodicity breaking (EB) parameters as the function of the scaled observation time

T/τMSD with the various mass ratios, M/m = 102 and 10−4, calculated from the KMC simulations.

The time lag is chosen as ∆t/τMSD = 10. The dotted lines are the fitting results with the power

exponent functions EB ∝ T−κ and T−1 for the short and long time scales, respectively.
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Figure 3.12: Time-correlation functions for the velocity direction of the minor molecule, defined

as Equation (3.23), with the various mass ratios M/m, obtained from the KMC simulations.

Figure 3.13: Time-correlation functions for the speed of the minor molecule, defined as Equa-

tion (3.24), with the various mass ratios M/m, obtained from the KMC simulations.



Chapter 4

Fluctuating Diffusivity of Particle in Gas

Mixtures: Theoretical Study

Abstract

The theoretical analyses for the Brownian yet non-Gaussian diffusion observed for a minor lightweight

particle diffusing in the binary gas mixtures is performed based on the Lorentz gas, consisting of

a moving particle situated in fixed point obstacles. For the Lorentz gas model, the mean square

displacement and non-Gaussian parameter are computed using the point process, and they do

not show the Brownian yet non-Gaussian diffusion since the speed of the mobile particle remains

unchanged. To incorporate the effect that the minor particle takes various speeds, the canoni-

cal ensemble averages for the correlation functions of the Lorentz gas are analytically calculated.

The averaged results exhibit the Brownian yet non-Gaussian diffusion, which is quantitatively

consistent with the numerical results for the binary gas mixture.

4.1 Introduction

Gas diffusion is a classical problem in statistical mechanics, and has been considered to be well-

understood [9–11, 107]. However, Chapter 3 presents that the gas system can exhibit a non-

trivial non-Gaussian diffusion. The numerical simulations revealed that a lightweight particle

situated in heavy gas particles exhibits the Brownian yet non-Gaussian diffusion; the mean square

displacement increases linearly against time, ⟨∆R2(∆t)⟩ ∝ ∆t, while the self part of the van-Hove

correlation function deviates from the Gaussian statistics. (Here, it should be noted that the non-

60
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Gaussian diffusion often accompanies the anomalous diffusion ⟨∆R2(∆t)⟩ ∝ ∆tκ (κ ̸= 1), which is

observed in glass former [23] or polymeric liquids [22]. Such a non-linear non-Gaussian diffusion is

beyond the scope of this chapter.) The Brownian yet non-Gaussian diffusion has been considered

to be attributed to two known origins: the first is the heterogeneous environment like glass-forming

liquids [23, 85, 108], biological systems [18, 26, 27], active matter [92, 93], or colloidal suspensions

[41, 91, 109], and the second is the fluctuation of the internal degrees of freedom appearing in

polymer melts or rod-shaped particles [24, 25]. The gas mixture investigated in Chapter 3 has

neither environmental heterogeneities nor conformational fluctuations. The observed Brownian

yet non-Gaussian diffusion originates from a novel origin concerning the velocity degree of freedom

of the minor particle: the separation of the relaxation timescales between the velocity direction

and speed of the minor particle. Namely, In the spherical coordinates, the angle components in

the velocity rapidly relax, while the radial component correlates for a longer timescale.

The dynamics of a light particle among heavier ones has frequently been modeled using the

Lorentz gas models [11, 71, 103, 110]. This model consists of a single mobile particle navigating

through a field of spatially fixed particles. Initially developed to represent the behavior of an

electron in a metal, the Lorentz gas model has been broadly applied as a simple representation for

transport phenomena in gases [103] and for certain classical dynamical systems [111, 112]. This

model has been instrumental in analyzing various properties like diffusion coefficients [71,113] and

velocity relaxation [71, 103]. Moreover, numerous extended models of the Lorentz gas have been

extensively explored [111,112,114]. Intuitively, one might anticipate that the diffusion of a light gas

particle in heavier particles could be effectively described using the Lorentz gas model. However,

the relationship between the basic, dilute Lorentz gas and the diffusion of a light particle in a

matrix of heavier gas particles remains unclear. Additionally, whether the Lorentz gas model can

accurately account for the non-Gaussian behavior in such gas systems is also uncertain.

This chapter conducts a theoretical analysis of the diffusion behavior of a light gas particle

moving through a medium of heavier gas particles in an equilibrium state. To model the Brownian

yet non-Gaussian diffusion observed in this medium, the random dilute Lorentz gas model is

utilized. This chapter begins with deriving analytical representations for both the mean square

displacement (MSD) and the non-Gaussian parameter for the Lorentz gas. These derivations are

based on the framework of the point process [115]. Subsequent to the derivation of these analytical

expressions, their ensemble averages over the initial speed of the minor particle, which follows the

Maxwell-Boltzmann distribution, are analytically calculated. This averaged result quantitatively

aligns with the observed Brownian yet non-Gaussian diffusion of a lightweight and minor gas
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mobile particle

immobile particle

Figure 4.1: Illustration of the Lorentz gas system, consisting of the single mobile particle, depicted

as a red point particle, immersed in the fixed spherical particles. The velocity of the mobile particle

after the ith collision is denoted as vc,i. uc,i means the unit vector directed from the mobile particle

towards the colliding fixed particle at the ith collision.

particle in binary gas mixtures, except for a long timescale.

4.2 Theoretical Analyses

4.2.1 Model Setting

The system is comprised of a mobile point particle with size zero situated in fixed spherical obstacles

with the radius σ. The mass of the mobile particle is denoted as M , which is required for the

current issue, while the dynamics of the conventional Lorentz gas does not depend on M . This

work is limited to the situation where the fixed particles are infinitely diluted, while such a simple

situation is enough to describe the Brownian yet non-Gaussian diffusion. The fixed particles are

randomly situated in the three-dimensional space with a uniform distribution. The number density

of the fixed particles is described as ρ. In the fixed particles, the mobile particle moves ballistically

until it collides with a fixed particle. Based on the hard-core potential [11], the velocity of the

mobile particle instantaneously changes at the collision. The velocity of the mobile particle after

the ith collision Vc,i+1 is expressed using that before the collision Vc,i as follows:

Vc,i+1 = (1− 2uc,iuc,i) · Vc,i (4.1)

where uc,i denotes the direction vector from the mobile particle to the colliding fixed particle, and 1

means the unit tensor. Figure 4.1 schematically illustrates the current model. From Equation (4.1),
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collision 1 collision 2 collision 3 collision 4

Figure 4.2: Illustration of the time sequence of the variables, concerning the dynamics of the mobile

particle. The mobile particle with the velocity Vc,i collides with a fixed particle at the time tc,i

and the direction vector uc,i at the ith collision.

the speed of the mobile particle V remains unchanged, i.e., V = |Vc,i| for any i. In the dilute

obstacle case, successive collisions are safely assumed to be uncorrelated if the long time-tails in

time-correlation functions are not examined. Namely, the dynamics of the mobile particle can be

described as a Markovian stochastic process. When dimensionless units are defined using M , V ,

and ρσ2, the Lorentz gas model for the dilute case has no parameters.

The Lorentz gas model has been regarded as a simplified representation of the minor and

lightweight particles in the binary gas mixture [11, 12]. For the gas mixture, the speed (or the

kinetic energy) of the minor particle is not constant even when the minor particle is sufficiently

lightweight. However, the speed of the minor particle can be approximated as a constant within

the relaxation timescale of the speed, which can be significantly larger than that of the velocity

direction as shown in Chapter 3. Later, the relation between the Lorentz gas model and binary

gas mixture is also discussed.

4.2.2 Correlation Function of Lorentz Gas

The dynamics of a moving particle is characterized by its velocities {Vc,i} and the times at the

collision {tc,i}. The position of this particle at time lag ∆t following the nth collision, denoted as

∆R(n,∆t), is given by:

∆R(n,∆t) = Vc,n+1(∆t− tc,n) +
n∑

i=1

Vc,i(tc,i − tc,i−1), (4.2)

where tc,0 = 0, which is arbitrary chosen. For clarity, the time sequence of the variables is illustrated

in Figure 4.2. To calculate the dynamics of the particle, the collision statistics for the single collision

between the mobile and a fixed particle is required. In the current model, the collision frequency

density ν(uc,i), as a function of the direction unit vector at the ith collision uc,i, completely
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characterizes the collision statistics. ν(uc,i) is derived from the collision statistics of a binary gas

mixture [2] under the assumption that the mass of the velocity of the surrounding gas particle is

zero:

ν(uc,i) = ρσ2Vc,i · uc,iΘ(Vc,i · uc,i), (4.3)

with Θ(x) representing the Heaviside step function. Equation (4.3) can be further simplified using

spherical coordinates. By setting the Cartesian coordinates of the mobile particle velocity as

Vc,i = (0, 0, v) and representing uc,i as uc,i = (sin θi cosϕi, sin θi sinϕi, cos θi), where θi is in the

range [0, π/2] and ϕi is in [0, 2π), the equation simplifies to:

ν(uc,i) = ρσ2V cos θi. (4.4)

Integrating Equation (4.4) over the variable uc,i leads to the total collision frequency, expressed

as: ∫
ν(uc,i)duc,i =

V

λ
, (4.5)

where λ, defined as 1/πρσ2, represents the mean free path of the particle. By combining Equa-

tions (4.4) and (4.5), one can derive the probability density for the event where the mobile particle

collides at the direction of uc,i at the time interval tc,i − tc,i−1, given a specific speed V . This

probability density, P (tc,i − tc,i−1,uc,i;V ), is formulated as:

P (tc,i − tc,i−1,uc,i;V ) = ν(uc,i) exp

[
−V

λ
(tc,i − tc,i−1)

]
. (4.6)

From Equation (4.6), the probability density at a time lag ∆t for a given number of collisions n

and speed V is obtained as follows:

P (∆R, {uc,i}, {tc,i};n,∆t, v) = δ[∆R−∆R(n,∆t)]
n+1∏
i=1

P (tc,i − tc,i−1,uc,i;V ), (4.7)

here the time lag should be within tc,i < ∆t < tc,i+1. Further, integrating Equation (4.7) over all

{uc,i} and {tc,i} sets, the probability density for ∆R with n, ∆t, and V is given as:

P (∆R;n,∆t, V ) =

∫
dV1

∫ ∞

∆t

dtc,n+1

∫ ∆t

0

dtc,n

∫ tc,n

0

dtc,n−1 · · ·
∫ tc,2

0

dtc,1

×
∫

duc,n+1 · · ·
∫

duc,1P (∆R, {uc,i}, {tc,i};n,∆t, V )P (V1)

=e−V∆t/λ

∫
dV1

∫ ∆t

0

dtc,n

∫ tc,n

0

dtc,n−1 · · ·
∫ tc,2

0

dtc,1

×
∫

duc,n · · ·
∫

duc,1δ[∆R−∆R(n,∆t)]
n∏

i=1

ν(uc,i)P (V1;V ),

(4.8)
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where P (V1;V ) = δ(|V1|−V )/4πV 2 denotes the initial velocity distribution of the mobile particle.

To advance the calculation, a characteristic function is introduced:

C(k;n,∆t, V ) =

∫
d∆R eik·∆RP (∆R;n,∆t, V ) (4.9)

Utilizing Equation (4.8), the characteristic function C(k;n,∆t, V ) can be computed as follows:

C(k;n,∆t, V )

=e−V∆t/λ

∫
dV1

∫ ∆t

0

dtc,n

∫ tc,n

0

dtc,n−1 · · ·
∫ tc,2

0

dtc,1

∫
duc,n · · ·

∫
duc,1

×
n∏

i=1

ν(uc,i)P (V1;V ) exp

{
ik ·

[
Vc,n(∆t− tc,n) +

n∑
i=1

Vc,i(tc,i − tc,i−1)

]}
.

(4.10)

Considering the Laplace transform of Equation (4.10), denoted as

Ĉ(k;n, s, V ) = LC(k;n, ·, V ) =

∫ ∞

0

d∆t e−∆tsC(k;n,∆t, V ), (4.11)

the following equation is obtained:

Ĉ(k;n, s, V ) =

∫
dV1

P (V1;V )

s− ik · V1 + V/λ

n∏
i=1

∫
duc,i

ν(uc,i)

s− ik · Vc,i+1 + V/λ
. (4.12)

This integration over V1 and {uc,i} is analytically obtained as

Ĉ(k;n, s, V ) =
λ

V

[
1

kλ
arctan

(
kV

s+ V/λ

)]n+1

, (4.13)

here k = |k|. The Fourier-Laplace transform of the total probability density of ∆R for a given V

is computed as the sum of the probability density of ∆R at the specific n (Equation (4.13)) over

the collision number n: Ĉ(k; s, V ) =
∑∞

n=0 Ĉ(k;n, s, V ). The result of this calculation is

Ĉ(k; s, V ) =

arctan

(
kV

s+ V/λ

)
(V/λ)

[
kλ− arctan

(
kV

s+ V/λ

)] . (4.14)

Equation (4.14) is the Fourier-Laplace transform of the self part of the van Hove correlation func-

tion. Any time-correlation function of the mobile particle can be straightforwardly calculated. It

is noteworthy that Equation (4.14) satisfies the normalization condition of the probability density:

Ĉ(k; s, V ) = s−1 at |k| → 0.
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MSD is derived as the second-order moment of the van Hove correlation function. Based on

Equation (4.14), the Laplace transform of the MSD for a given V is computed as the following

expression:

L[⟨∆R2(·)⟩V ](s) = − ∂2

∂k2
Ĉ(k; s, V )

∣∣∣∣
k=0

=
2V 2

s2(s+ V/λ)
, (4.15)

where ⟨· · · ⟩V represents the statistical average for a given V . The fourth-order moment of the

Laplace transform is also calculated as follows.

L[⟨∆R4(·)⟩V ](s) =
∂2

∂k2

∂2

∂k2
Ĉ(k; s, V )

∣∣∣
k=0

=
8V 4(9s+ 5V/λ)

3s3(s+ V/λ)3
. (4.16)

The inverse Laplace transforms of Equations (4.15) and (4.16) are:

⟨∆R2(t)⟩V
λ2

=2
(
−1 + V∆t/λ+ e−V∆t/λ

)
, (4.17)

⟨∆R4(t)⟩V
λ4

=
4V 2∆t2

3λ2

(
5 + 4e−V∆t/λ

)
− 8V∆t

λ

(
2− e−V∆t/λ

)
+ 8

(
1− e−V∆t/λ

)
. (4.18)

At the short time lag limit, ∆t → 0, Equations (4.17) and (4.18) are simplifed as ⟨∆R2(∆t)⟩V →
V 2∆t2 and ⟨∆R4(∆t)⟩V → V 4∆t4, respectively. This indicates just the ballistic motion at the

short timescale. Conversely, in the long-time scale, ∆tV/λ ≫ 1, MSD converges to ⟨∆R2(∆t)⟩V →
2V λ∆t, which is the normal diffusion. From the definition of the diffusion coefficient ⟨∆R2(∆t;V )⟩ =
6D∆t, D is calculated as D = V λ/3. This result aligns with the established finding in gas kinetic

theory [11]. Furthermore, using Equations (4.17) and (4.18), the non-Gaussian parameter (NGP)

under a given velocity V , α(∆t;V ), is derived as follows:

α(∆t;V ) =
3⟨∆R4(∆t)⟩V
5⟨∆R2(∆t)⟩2V

− 1

=
4e−V∆t/λ(V 2∆t2/λ2 − V∆t/λ+ 1) + 1− 2V∆t/λ− 5e−2V∆t/λ

5(−1 + V∆t/λ+ e−V∆t/λ)2
.

(4.19)

Figure 4.3 presents the MSD as formulated in Equation(4.17) and the absolute value of the

NGP according to Equation(4.19) for the Lorentz gas, where the NGP is always negative. The

MSD exhibits ballistic motion (⟨∆R2(∆t)⟩V ∝ ∆t2) at a short timescale and diffusive regime

(⟨∆R2(∆t)⟩V ∝ ∆t) at a long timescale. The crossover from the ballistic regime to the diffusive

regime is approximately the mean free time, indicated by V∆t/λ ≈ 1. The NGP is observed to be

−2/5 at shorter timescales and approaches zero as the time lag ∆t increases. This means that the

dynamics of the mobile particle in the random dilute Lorentz gas is approximately regarded as the

Gaussian process at the timescale ∆tV/λ ≳ 1. Namely, the random dilute Lorentz gas model does
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Figure 4.3: Scaled mean square displacement and non-Gaussian parameter against scaled time

V∆t/λ for the dilute random Lorentz gas model, predicted by Equations (4.17) and (4.18).
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not show the Brownian yet non-Gaussian diffusion, which is observed in the binary gas mixture

where one component is minor and lightweight. Here, the origin of non-Gaussianity at ∆t = 0 is

linked to the energy conservation and the smallness of the degrees of freedom in the Lorentz gas.

In short timescales, the particle moves ballistically, and the NGP reflects the non-Gaussian nature

in the velocity distribution. The NGP at the short-time limit can be easily calculated as:

α(∆t;V ) =
3⟨V 4∆t4⟩V
5⟨V 2∆t2⟩2V

− 1 = −2

5
, (4.20)

This result aligns with the theoretical predictions for the short timescale behavior displayed in

Figure 4.3.

4.2.3 Correlation Functions of Binary-Gas Mixture

The Lorentz gas has been conventionally regarded as a model representing a lighter particle moving

in heavier particles. Then, one might anticipate that this model could replicate the Brownian yet

non-Gaussian diffusion observed for the lighter particle. However, the theoretical analysis of the

random dilute Lorentz gas, as depicted in Figure 4.3, indicates that the model does not demonstrate

non-Gaussian behavior in the timescale of normal diffusion (where MSD is proportional to t).

The discrepancy between the behaviors observed in the Lorentz gas model and those in binary

gas mixtures [2] stems from the relaxation of the speed (or kinetic energy) of a lightweight particle

in the binary gas mixture over very long timescales. Namely, it is physically not reasonable to

assume that the speed of a lightweight particle remains constant over a long time scale for the

description of the Brownian yet non-Gaussian diffusion. To address this type of diffusion, it is

necessary to consider the effect that the target particle takes at various speeds. This effect can be

incorporated by the ensemble average for the time-correlation function. The statistical quantities,

such as the MSD for the binary-gas mixture, would be interpreted as the MSD in the Lorentz

gas averaged over the initial speed of the lightweight particle within a certain timescale. In an

equilibrium state, the probability density for the speed of the lightweight particle follows the

Maxwell-Boltzmann distribution at inverse temperature β, expressed as:

PMB(V ) = 4πV 2

(
βM

2π

)3/2

exp

(
−βMV 2

2

)
. (4.21)

The ensemble average of the MSD is calculated as

⟨∆R2(∆t)⟩
λ2

=

∫
⟨∆R2(∆t)⟩V

λ2
PMB(V )dV

= 2

[
−1 +

2γ∆t√
π

+ (1 + 2γ2∆t2)eγ
2∆t2erfc(γ∆t)

]
,

(4.22)
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Figure 4.4: Scaled mean square displacement against scaled time ∆tγ in binary gas mixtures. The

red curve represents the theoretical prediction (Equation (4.22)). For comparison, symbols present

the result for the lightweight particle in the binary gas mixture with various mass ratios M/m,

obtained from the KMC simulations as displayed in Figure 3.2.
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Figure 4.5: Theoretical prediction for the non-Gaussian parameter (NGP) for the minor lightweight

particle in the binary gas mixtures, derived from Equations (4.22) and (4.23). The symbols repre-

sent the results with the various mass ratios obtained from the KMC simulations, as represented

in Figure 3.10.

where γ is defined as γ = 1/λ
√
2βm, which can be regarded as a characteristic frequency. Figure 4.4

shows the scaled mean square displacement against scaled time. The red curve represents the

theoretical result for the averaged time correlation function, Equation (4.22). For comparison, the

results for the binary gas mixture are also presented with various mass ratios M/m, which have

already been obtained by the KMC simulations displayed in Figure 3.2. The theoretical predictions

align well quantitatively with the results from the KMC simulations, particularly when the mass

ratio is considerably small (M/m ≪ 1).

Analogously, the canonical ensemble average for the NGP for the Lorentz gas is analytically

computed. The ensemble average of the fourth-order moment of the self-part of the van-Hove

correlation function is calculated as follows:

⟨∆R4(∆t)⟩
λ4

=

∫
⟨∆R4(∆t)⟩V

λ4
PMB(V )dV

=8− 16γ∆t√
π

+ 40γ2∆t2 − 224γ3∆t3

3
√
π

− 128γ5∆t5

3
√
π

−
(
8 + 32γ2∆t2 − 96γ4∆t4 − 128

3
γ6∆t6

)
eγ

2∆t2erfc(γ∆t).

(4.23)

From the second and fourth moments, Equations (4.22) and (4.23), the non-Gaussian parameter

is calculated. Figure 4.5 presents the NGP, α(∆t), against scaled time. The theoretical result,
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described in Equation (4.22), is represented as the red curve. The numerical data for the binary gas

mixture, which is obtained in Figure 3.10, is also shown with various mass ratios, using symbols.

The theoretical result exhibits the plateau regime at the normal diffusion regime ∆tγ ≳ 1, which

indicates that the canonical ensemble average of the Lorentz gas model can capture the Brownian

yet non-Gaussian diffusion. Further, the theoretical result is quantitatively consistent with the

simulation result, except for the Gaussian decay at a very long timescale, which will be discussed

subsequently. Distinct from the Lorentz gas case, as presented in Figure 4.3, the NGP calculated

using Equations (4.22) and (4.23) approaches zero at ∆t → 0. This is a natural consequence

where the velocity distribution of the minor lightweight particle obeys the Maxwell-Boltzmann

distribution, i.e., Gaussian distribution. When considering the long timescale as time extends to

infinity (∆tγ → ∞), the NGP asymptotically approaches the constant value of 3π/8 − 1. This

limit is consistent with the plateau observed in the NGP obtained using the KMC simulations.

The self part of the van-Hove correlation function Gs(∆R,∆t) would be important, particularly

at a timescale, which is considerably larger than the mean free time. When considering the Lorentz

gas at such a time scale (where s ≪ V/λ), the expression given in Equation (4.14) is simplified as

Ĉ(k; s, V ) ≈
arctan(kλ)− ks

k2V + V/λ2

(V/λ)

[
kλ− arctan(kλ) +

ks

k2V + V/λ2

] . (4.24)

Its inverse-Laplace-transform is

C(k; t, V ) ≈ (1 + k2λ2) exp

[
−(1 + k2λ2)[kλ− arctan(kλ)]

kλ

∆tV

λ

]
. (4.25)

It is important to recognize that Equation (4.25) is applicable for the long time scale, specifically

when ∆t ≫ λ/V . In such a timescale, the predominance of the short-wavelength component at

kλ ≪ 1 would be expected. For the small wavelength, Equation (4.25) is simplified to:

C(k; ∆t, V ) ≈ exp

(
−V∆tλk2

3

)
. (4.26)

This equation is nothing but the characteristic function of the Gaussian distribution. Consequently,

the van Hove correlation function for the Lorentz gas for a given speed V at the long-timescale is

approximately expressed as the Gaussian distribution:

G(∆X; ∆t, V ) ≈
√

3

4πV λ∆t
exp

(
− 3∆X2

4V λ∆t

)
. (4.27)
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When integrating this function with the Maxwell-Boltzmann distribution as shown in Equa-

tions (4.21) and (4.27), the van Hove correlation function for a minor lightweight gas particle

in a binary gas mixture is obtained:

G(∆X; ∆t) =

∫ ∞

0

G(∆X; ∆t, V )PMB(V )dV, (4.28)

This result aligns with the result obtained from a phenomenological approach as shown in Equa-

tion (3.27).

4.3 Discussion

The current model predicts that the Non-Gaussian Parameter α(∆t) asymptotes to a constant at

a long-time limit. Namely, the model fails to reproduce the Gaussian decay, which was observed

in the binary gas mixture, which is presented in Figure 4.5. The difference between the theoretical

calculation and the kinetic Monte Carlo simulation at the long timescale stems from the omission of

the speed relaxation. The current theoretical model simply incorporates the effect that the target

particle takes various speeds, just through the canonical ensemble average for the time-correlation

function. Namely, the relaxation of the speed is not directly treated in the calculation. As a result,

the diffusion coefficient of the target particle for a given speed V remains unchanged even at the

long timescale for a single trajectory. This is the reason why the NGP does not approach zero at

the long-time limit in the theoretical model.

In a binary gas mixture, the diffusion coefficient of a lightweight particle experiences temporal

fluctuations owing to slow speed relaxation. To accurately describe the diffusion of such a particle

over a long timescale, it is necessary to integrate an additional stochastic process into the model.

The diffusing diffusivity model, as presented by Chechkin et al. [116], serves as a suitable framework

for this purpose. In this model, the diffusion coefficient is governed by the Langevin equation,

which can effectively capture the effect of the speed fluctuations. Some results from the gas kinetic

theory [117] would be utilized in designing the stochastic process of the diffusion coefficient.

Another possible approach for the description of the Brownian yet non-Gaussian diffusion

in gas is based on the Boltzmann equation [11, 12]. Formally, any distribution function and time

correlation function of a gas particle can be calculated from the Boltzmann equation, and thus, the

Brownian yet non-Gaussian diffusion should also be expressed, although the analytical calculations

would be challenging. However, for some limited cases, the analyses are possible. For instance,

the Boltzmann equation of a heavy particle immersed in light gas particles can be reduced to
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the Fokker-Planck equation corresponding to the simple Langevin equation, which is analytically

solvable [84]. In the same way, the Boltzmann equation for a light particle in heavy gas particles

could possibly be simplified into a Fokker-Planck equation, which is solvable. If such a strategy

can be performed, a new modeling path for the fluctuating diffusivity based on the microscopic

description becomes possible. Such a theoretical analysis is interesting for future work.

4.4 Summary

This chapter theoretically examined the dynamics of a minor light particle situated in heavier

gas particles, utilizing the dilute Lorentz gas model. The Mean Squared Displacement and Non-

Gaussian parameter for the conventional Lorentz gas model at a given velocity V were analytically

obtained. The result did not exhibit the Brownian yet non-Gaussian diffusion, which appears in

binary gas mixtures with significant differences in mass and fraction. It was observed that such

Brownian yet non-Gaussian diffusion can be reproduced by averaging the time correlation functions

of the Lorentz gas model over initial speeds, except for the long timescale, which is larger than

the relaxation time of the speed of the minor lightweight particle. This study establishes a link

between the traditional Lorentz gas model and binary gas mixtures, offering novel perspectives on

gas diffusion.



Chapter 5

Increase in Diffusivity of Rod in

Obstacles

Abstract

The dynamics of the rod particle situated in spatially fixed point obstacles is numerically exam-

ined under the assumption of the Markovian process. It is found that the translational diffusion

coefficient of the rod particle exhibits non-monotonic dependence against the number density of

the obstacles when the aspect ratio of the rod is large, even in the current Markovian case. The

power exponents of the translational diffusion coefficient at the dilute, intermediate density, and

concentrated regimes are straightforwardly understood based on the angular velocity of the rod

and collision frequency.

5.1 Introduction

The translational diffusion coefficient D of a target particle decreases when the concentration of

the surrounding matrix particles increases in most cases. This reduction in D is typical behavior,

which can be intuitively explained as the result of the increase in the collision frequency subject

to the target particle. Interestingly, in cases where the particle is rod-shaped, an unexpected

behavior is observed: D may actually increase with an increase in matrix concentration, provided

the concentration reaches a certain value. This unusual behavior was initially reported by Frenkel

and Maguire [34, 35] in their study of fluids composed of infinitely thin rods, where the static

properties are those in an ideal gas. Subsequent studies [118,119] provided more precise data on this

74
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phenomenon. In the systems examined by Frenkel and Maguire, there are no concealed particles or

thermostats; particles move in a ballistic manner, interrupted only by elastic collisions. Following

these foundational studies [34, 35], a similar increase in D has been observed in diverse systems,

including (i) an infinitely thin rod in a two-dimensional array of spatially fixed point obstacles [43],

(ii) a thick rod navigating through a two-dimensional matrix filled with circular obstacles [67], and

(iii) an active matter fluid where rods propel themselves along their major axis [120]. Notably, in

these instances, the increase in D does not result from a phase transition. Still, it is important

to note that in certain rod systems, an increase in D is observed concurrently with the isotropic-

nematic transition [53]. These complex multi-particle interactions, though interesting, are not

within the scope of this chapter.

Some concepts were considered to explain the increase in the diffusion coefficient D of the

rod-shaped particle, including steric hindrance, dynamic correlation, confinement, and tube-like

restriction [35, 43]. Although these concepts are not well-defined, they represent a cylindrical

constraint that restricts the rotational motion of the rod. In this dissertation, such a concept

is referred to as the “kinetic constraint,” which is defined as a constraint that prevents the rod

from moving through neighboring obstacles until the rod travels a distance approximately equal

to the rod length. Based on the kinetic constraint, the increase in D can be phenomenologically

explained. The rod rotational motion is kinetically constrained by the matrix particles, while the

ballistic motion along the major axis of the rod is not largely hindered when the rod is sufficiently

thin. Consequently, the ballistic motion of the rod along the major axis persists for a long timescale,

which becomes large as the concentration of media increases and the rotational constraint becomes

strong. The ballistic motion is rapid compared with the diffusive motion, and the persistence of

the ballistic motion leads to the increase in D. An active matter composed of a rod swimming

along the major axis can also show the increase in D with a similar mechanism [120]. In light

of prior works, one question arises: Is the kinetic constraint required for the realization of the

increase in rod translational diffusivity?

In exploring the potential mechanism for an increase in the diffusion coefficient D, a hypothesis

has been formulated. Specifically, the increase in diffusivity could result only from a hindrance of

rotational motion without disturbing motion along the major axis. To validate this hypothesis, a

simple model system is employed; the current system features a decrease in rotational diffusivity

as the density of the matrix increases while maintaining largely unaffected ballistic motion along

the major axis of a rod particle. A possible representation of this system is a single mobile rod

within three-dimensional (3D) fixed point obstacles. This system can be viewed as an extension
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of the Lorentz gas models [68,81,100], which usually involve a single spherical particle navigating

through fixed obstacles.

In this Chapter, an increase in the diffusion coefficient D is observed even under a Markovian

process, where the kinetic constraint is essentially non-existent; the obstacles in the current system

do not remain in the same position nor constrain the rotational motion of the rod, while the

obstacles change the rod motion. The dynamics of a single sphere-cylindrical particle situated in

a three-dimensional matrix of randomly distributed point obstacles are explored using a kinetic

Monte Carlo (KMC) method [97,98]. This approach assumes a Markovian process, where successive

collisions between the rod and obstacles are stochastically independent like those in a dilute gas

model, contrasting with typical molecular dynamics simulations. The study finds that D for this

rod-like particle increases in a regime of intermediate matrix density if the rod is sufficiently long.

In this model, D reaches a peak value and subsequently decreases as obstacle density is sufficiently

large, which is attributed to the finite thickness of the rod. Based on the Markovian nature of

the system, scaling relations between D and obstacle density are provided for respective regimes,

including dilute, intermediate, and concentrated densities. These findings may offer new insights

into the diffusion phenomena of non-spherical particles.

5.2 Simulation Method

5.2.1 System Setting

The current system is comprised of a rod-like sphero-cylinder, also termed a capsule or stadium of

revolution, characterized by a radius σ, massM , and a major axial length L. The effective length of

the rod is Le = L+2σ, accounting for the half-spherical end-caps. The inertia tensor I is calculated

under the assumption that the rod mass is uniformly distributed throughout its volume [121]. The

schematic representation of the rod is illustrated in Figure 5.1. In this model, point obstacles

are uniformly distributed throughout an unbounded three-dimensional space, characterized by a

number density ρ. The interaction between the rod and these obstacles is defined by a hard-core

potential, ensuring that the obstacles neither penetrate the rod nor move during a collision. The

rod exhibits ballistic motion except when it undergoes an elastic collision with an obstacle. During

such a collision, both the translational velocity V and the angular velocity Ω of the rod are altered,

adhering to the principle of conservation of the total energy of the system. This total energy is

apportioned between the translational and rotational kinetic energy of the rod particle. The total
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Figure 5.1: Schematic illustration of the rod. The collision frequency with the variables l and n is

determined from rod direction U (t) and velocities for the translational and rotational degrees of

freedom, V (t) and Ω(t).

energy of the system is fixed at 5/2β, with β representing the inverse temperature. This energy

value remains constant throughout the duration of the simulations. By choosing mass M , radius

σ, and inverse temperature β as the basis for dimensionless units, this model is characterized

only by two remaining parameters: the effective rod length Le and the number density of the

obstacles, ρ. For clarity, a speed unit V̄ , which satisfies 1 = βMV̄ 2, is defined. This study

presents physical quantities with their dimensions to enhance understanding. However, for those

who prefer working with reduced quantities, it is possible to set variables, including M , σ, β,

and V̄ , to unity without compromising the generality. In this system, the interaction between the

rod and obstacles is defined by a hard-core potential, and then the dynamical properties remain

independent of temperature, provided that the physical quantities are represented in dimensionless

units. Here, in this chapter, the focus is not on the trapping regime, which emerges approximately

at densities surpassing the inverse volume of the sphero-cylinder, denoted as ρσ2Le ≳ 1.

5.2.2 Simulation Protocol

For the current system, the kinetic Monte Carlo (KMC) simulation [97, 98] is constructed to

calculate the dynamics of the rod with the Markovian process. This method requires two key

inputs: (i) collision frequency density between the rod and an obstacle, and (ii) the change rule of

the translational and angular velocities of the rod at the collision. The input (i) is calculated in a

similar manner as the case for collisions between the spherical particles, as presented in Chapter 3.
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Namely, the collision frequency density between the sphero-cylinder and a point obstacle for given

variables V (t), Ω(t), and U (t) is calculated under the assumption that the point obstacles are

uniformly distributed in any time. Here, for a simple description, the 8-dimensional time-dependent

variables V (t), Ω(t), and U (t) are simply represented as Λ(t). Λ(t) defines the state of the rod,

and the input (i) depends only on Λ(t). The total collision frequency for a given Λ(t), which is

denoted as ν̄(Λ(t)), is calculated by the integration of the following collision frequency density

over the surface of the rod:

ν(l,n;Λ(t)) =ρσVe(l;Λ(t)) · nΘ[Ve(l;Λ(t)) · n]

×
{
δ(U (t) · n) + σδ

(
l − L

2

)
Θ[U (t) · n] + σδ

(
l +

L

2

)
Θ[−U (t) · n]

}
,

(5.1)

where l refers to the axial coordinate along the rod direction, and n is a unit vector perpendicular

to the rod surface as illustrated in Figure 5.1. These variables determine the coordinate of the

collision point between the rod and a colliding obstacle, expressed as lU + σn. The velocity

at this collision point is represented as Ve(l;Λ(t)) = V (t) + lΩ(t) × U (t). In Equation (5.1),

the three terms within the curly brackets correspond to collisions occurring on different parts of

the rod: the first term relates to collisions along the side (denoted as ∥), while the second and

third terms pertain to collisions at the two opposite edges (indicated as ±) of the rod. Utilizing

ν(l,n;Λ(t)) and ν̄(Λ), the location of the collision point and the time interval ∆tc for consecutive

collisions are determined through stochastic sampling methods like inversion method or rejection

method [122]. Subsequently, From the sampled variables, the rod state, characterized by R, U ,

V , and Ω, undergoes updates in accordance with the principles of classical mechanics for the rigid

body. By iteratively performing these sampling and updating processes, the dynamics of the rod

particle is numerically computed. Comprehensive explanations regarding the derivation of collision

statistics, the employed sampling technique, and update protocols are available in Appendix 5.A

in this Chapter.

5.3 Results

5.3.1 Increase in Diffusivity

Distinct behaviors emerge when varying the parameter ρ while maintaining a constant Le = 2502σ,

as visually captured by the representative trajectories illustrated in Figure 5.3. For visibility, the

three-dimensional dynamics is projected onto the XY plane, and respective axes are scaled by
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time

ballistic motion collision

Figure 5.2: Schematic representation of the Kinetic Monte Carlo (KMC) method. U (t), R(t),

V (t), and Ω(t) denote the directional unit vector, position, velocity, and angular velocity of the

rod at time t, respectively. The coordinates of the collision point are represented by l and n, with

l ranging from −L/2 to +L/2 as the axial coordinate and n being the surface normal at the point

of collision. ∆tc refers to the time interval between successive collisions. The variables ∆tc, l, and

n are stochastically sampled based on the collision statistics, as per Equation (5.1). Following this

sampling, the values of R, U , V , and Ω at the subsequent time t+∆tc are calculated.
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Figure 5.3: Illustration of the center of mass trajectories of a rod at the length Le = 2502 σ with

different scaled obstacle densities, ρσL2
e, obtained using the kinetic Monte Carlo simulations. The

3D motions are projected onto the XY -plane and are normalized with respect to the rod effective

length, Le.



CHAPTER 5. INCREASE IN DIFFUSIVITY OF ROD IN OBSTACLES 80

the effective rod length. The duration of observation for these behaviors is 2.0 × 106σ/V̄ . When

ρσL2
e equals 1 or 10, the motion of the rod appears to be random. However, at a higher density,

specifically when ρσL2
e is 100, there is a noticeable tendency for the rod to move in a straight

manner over greater distances compared to that in lower density cases. At a higher density, where

ρσL2
e reaches 1000, the motion of the rod is characterized by both straight and bouncing motions

To analyze the motions depicted in Figure 5.3, the translational diffusion coefficient D of the

center of mass of the mobile rod is computed from the mean square displacement in a linear

time regime using the relation, ⟨∆R2(∆t)⟩ = 6Dt. The relation between D/V̄ σ and the obstacle

number density ρσ3 is presented in Figure 5.4(a) for various lengths of the target rod, Le, where

error bars are a result of the fitting. D demonstrates non-monotonic behavior with an increase

in ρ for rods that are significantly elongated, specifically when Le ≳ 66 σ. In such cases, D at

large Le displays both a local minimum and maximum. When the data are displayed in scaled

dimensions as D/V̄ Le and ρσL2
e, as indicated in Figure 5.4(b), the curves collapse except in the

case of higher density regimes. The observed asymptotic behaviors in different density regimes are

as follows: for small densities, D/V̄ σ ∝ (ρσ2Le)
−1; for intermediate densities, D/V̄ σ ∝ ρL3

e; and

for large densities; D/V̄ σ ∝ (ρσ3)−1. It is important to note that this non-monotonic dependence

of D on ρ occurs even in a Markovian process. In contrast to D, the rotational diffusion coefficient

Drot in the current system displays a monotonic relation with ρ, specifically, Drotσ/V̄ ∼ (ρL3
e)

−1

as detailed in Figure 5.7 in Appendix 5.C.

The scaling relations between the diffusion coefficient D and the number density ρ can be simply

elucidated based on the Markovian nature of the current system. In an equilibrium state, D is

calculated not from the mean square displacement, but through the integration of the velocity auto-

correlation function over a time lag, represented by D =
∫∞
0
⟨V (∆t) · V (0)⟩d∆t. Consequently,

the diffusion coefficient can be approximated as the product of the squared speed V̄ 2 and the

relaxation time of the translational velocity. The collision frequency in this system is contributed

by two distinct parts: the collision frequencies from the side, denoted as ν̄∥, and those from

the edges, denoted as ν̄±. The scaling of these contributions is quantified as ν̄∥ ∼ ρσLeV̄ and

ν̄± ∼ ρσ2V̄ . These scaling relations are further substantiated by detailed calculations regarding

collision frequencies, as outlined in Equations (5.8) and (5.13) in Appendix 5.A. Additionally, the

average angular velocity of the rod scales as Ω̄ ∼ V̄ /Le. In the dilute regime, where ρσL2
e ≲ 1,

the condition Ω̄ > ν̄∥ is typically met. Under this low-density condition, the rod predominantly

rotates and infrequently collides with obstacles along its side. A few collisions significantly alter

the rod motion as the rod undergoes impulsive forces from a variety of directions. Consequently,
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Figure 5.4: Translational diffusion coefficient D of the rod for varying lengths Le, calculated from

Kinetic Monte Carlo simulations. The data are presented in two forms: (a) D/V̄ σ as a function of

the obstacle number density ρσ3, and (b) in a scaled manner as D/V̄ Le versus ρσL2
e. Error bars

and the respective asymptotic exponents are also included.
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the translational velocity relaxation time can be estimated as roughly equal to the average collision

time ∼ 1/ν̄∥, and D scales as D ∼ V̄ 2/ν̄∥ ∼ V̄ /ρσLe. This explanation aligns with the random

motions observed in the lower density regions, specifically where ρσL2
e ≲ 10, as illustrated in

Figure 5.3.

In the higher density regime, ρσL2
e ≳ 1, the condition Ω̄ < ν̄∥ is met. In this case, the rod

rotational motion becomes diffusive, resulting in a slow directional change. In this regime, velocities

in orthogonal directions relax swiftly, while those in axial directions remain relatively unaffected.

In such a circumstance, two potential relaxation mechanisms exist for the axial direction velocity:

alteration in the rod direction or collisions at its edges. The change in the rod direction between

collisions is approximated as ∆θ ∼ Ω̄/ν̄∥. Consequently, the rotational relaxation time is scaled

as τr ∼ ∆θ−2/ν̄∥ ∼ ρL3
eσ/V̄ . This calculation also leads to the prediction of the rotational

diffusion coefficient, Drot = (2τrot)
−1 ∼ V̄ /ρL3

eσ, which agrees with the simulation data, as shown in

Figure 5.7 in Appendix 5.C. The time interval between collisions at the rod edge is approximately

ν̄−1
± . In the intermediate density regime, characterized by an increase in D, the rotational relaxation

time is shorter than the collision time interval at the edge. Therefore, the velocity relaxes through

the rotation of direction, leading to an explanation of diffusion coefficient D ∼ V̄ 2τrot ∼ ρL3
eV̄ σ.

In the higher density regime, where D begins to decrease, collisions at the edge become the

primary mechanism for axial velocity relaxation. Under this circumstance, the diffusion coefficient

is roughly derived as D ∼ V̄ 2/ν̄± ∼ V̄ /ρσ2. These described mechanisms appear to align with the

observed phenomena of persistent straight motion at ρσL2
e = 100 and both straight and bouncing

motions at ρσL2
e = 1000, as depicted in Figure 5.3. Furthermore, the estimated exponents are

consistent with the simulation results presented in Figure 5.4.

5.3.2 Comparison with Molecular Dynamics Simulation

One may suspect that the increase in D might appear as an artifact, given the assumption of a

Markovian process even for situations with large concentration regimes. Nonetheless, the following

analysis demonstrates that this assumption is, fortunately, a good approximation for calculating

D in the context of a rod within a 3-dimensional matrix of point obstacles. To this end, the

dynamics of a rod are computed using standard molecular dynamics (MD) simulations [51]. In

these simulations, the repulsive interactions between the rod and point obstacles are set to be

the Weeks-Chandler-Andersen potential [123], a softer alternative to a hard-core potential. The

methodology of the molecular dynamics simulations is expressed in Appendix 5.D. Figure 5.5



CHAPTER 5. INCREASE IN DIFFUSIVITY OF ROD IN OBSTACLES 83

10
-1

10
0

10
0

10
1

10
2

10
3

Figure 5.5: Reduced translational diffusion coefficient, denoted as D/V̄ Le, in relation to the ob-

stacle number density ρσL2
e, obtained from the molecular dynamics (MD) simulations. Error bars,

denoted by symbols, are also displayed. Data is presented for three distinct lengths of rods Le.

For comparison, results from Kinetic Monte Carlo (KMC) simulations, as previously shown in

Figure 5.4, are represented using curves.

shows D/V̄ Le against ρσL2
e for varied rod lengths Le/σ, calculated through MD simulations.

These results include error bars derived from fittings of the mean square displacements. Due to

high computational costs, long rod cases, Le ≳ 16000 σ, are not analyzed. For comparisons,

Figure 5.5 also presents data from the kinetic Monte Carlo (KMC) simulations (Figure 5.4) as

solid curves. The diffusion coefficients obtained from MD simulations quantitatively agree with

the KMC results, indicating that multi-body correlations can be negligible for the calculation of

D over the broad range of ρ assessed.

5.4 Discussion

This study demonstrates that the translational diffusion coefficient, D, can indeed increase even

under the Markovian process, and the exponents observed in the current system are easily ex-

plained. However, this finding does not necessarily simplify the understanding of exponents in

previously studied systems. Notably, the study conducted by Frenkel and Maguire [34, 35] on the

diffusion coefficient D of constituent particles in a system of infinitely thin hard rods showed that

D is proportional to the square root of the rod density. In a two-dimensional setting involving a rod
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among point obstacles, Höfling, Frey, and Franosch [43] found the power exponent of D relative to

obstacle density to be 0.8 in a concentrated regime. Additionally, Mandal et al. [120] explored the

dynamics of a rod-shaped active swimmer moving axially and found that D is proportional to the

square of the density of its constituent particles. In these earlier systems, kinetic constraints would

play a significant role for each power exponent and must be considered to explain the exponents

comprehensively.

Tucker and Hernandez [67,124] examined a system that is similar to the current system. They

considered the dynamics of a mobile rod with the length 5Å moving through spatially fixed spherical

obstacles with a radius of 0.5Å. They considered various rod thicknesses, specifically 0, 0.1, and

0.5Å. They argued that an increase in the diffusion coefficient D does not occur in their 3D system,

although it occurs in a 2D setup. This argument may appear to be inconsistent with the obtained

results. Nonetheless, equating the dimensional parameters in their system with those in the current

study, the rod effective aspect ratio becomes approximately 10, which is obtained from considering

the effective interaction distance: the sum of the rod thickness and the obstacle size. For a rod

with an aspect ratio of 10, no increase in the diffusion coefficient D is observed, as demonstrated

in Appendix 5.8. The rise in D becomes apparent when the aspect ratio exceeds approximately

24, corresponding to Le/σ ≳ 520/11 in the current system. Namely, in the system analyzed by

Tucker and Hernandez [67], an increase in D would transpire with either a significantly smaller

obstacle radius or a substantially longer rod. Otto, Aspelmeier, and Zippelius [125] approached

the dynamics of infinitely thin rods in a Markovian process, assuming uncorrelated sequential

collisions. They concluded that an increase in D is unlikely in such a Markovian nature. This

stance starkly contrasts with the findings of this study. However, their theory did not incorporate

the slow relaxation of the ballistic motion along the axial direction, and thus, the increase in D

could not be captured in their theory.

The current numerical simulations demonstrated that the increase in the diffusion coefficient

can appear in the Markovian nature. This means that, if the stochastic process for the velocity

V , angular velocity Ω, and direction vector U of the rod is considered, the Markovian process is

enough to express the increase in D. Meanwhile, if only the translational velocity is observed, its

stochastic process will seem to be the non-Markovian process; the coarse-graining of the variables,

Ω and U in this case, generally induces the non-Markovianity. The rotational degrees of freedom

exhibit a long-time relaxation, as estimated in Section 5.3.1. If such a long-time relaxation can be

incorporated as a historical effect into the stochastic process of the translational degrees of freedom

of the rod, the increase in D would be analytically expressed.
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It is emphasized to note that the increases in D can manifest in a ballistic system [34, 35, 43,

118, 119] or in certain active matter systems [120], in which the persistence of the axial motion

emerges. While it might be speculated that a rise in D is possible for passive rod-shaped particles

in some solvents or porous media, these systems do not demonstrate an increase in diffusivity via

the same mechanism as the current study due to the rapid relaxation of the ballistic motion in

the axial direction by Brownian motion. A recent study observed an increase in diffusivity with

the growing aspect ratio of a rod within a gel [126], though the underlying mechanism differs from

that of this study.

The current system involves a rod interacting with fixed or infinitely massive point obstacles.

Considering the finite mass cases in an equilibrium state may be interesting. When the mass of the

obstacles substantially surpasses M , the obstacle motion is slow due to the Maxwell-Boltzmann

velocity distribution. This situation aligns closely with the current system, as the mobile obstacles

can effectively be regarded as fixed obstacles in relation to the rod particle, and the increase in

diffusivity of the rod is expected to occur. Conversely, if the obstacle mass is on par with M , a

deviation from the current system can occur, influenced by the substantial variation in translational

and rotational relaxation times against obstacle mass. Nonetheless, an increase in diffusivity might

still be evident since the increase in D simply results from the reduction of the rotational motion

and persistence of the ballistic motion along the axial direction, which can hold for finite mass

cases. Investigating the impact of obstacle mass on the increase in diffusivity will be an interesting

future work.

5.5 Summary

This chapter revealed that an upturn in D is possible even in a Markovian nature, which does

not essentially induce the kinetic constraint. A simplified model was employed, consisting of a

single mobile rod-shaped particle in fixed obstacles in a three-dimensional space. The dynamics of

the rod was analyzed through efficient kinetic Monte Carlo simulations assuming the Markovian

process. The translational diffusion coefficient D of the rod exhibits a decrease, then an increase,

and finally a decrease again with the increase in obstacle density. This unusual diffusion behavior is

interpretable thanks to the Markovian process assumption. Specifically, the D upturn is elucidated

without invoking kinetic constraints but rather by focusing on two timescales: angular velocity and

collision frequency. Additionally, the minimal length Le required for the emergence of D upturn in

the current system is approximately estimated as Le/σ ≃ 520/11 (corresponding to an aspect ratio
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of 24). This investigation will provide fresh insight into the kinetics of the non-spherical particles.

5.A Kinetc Monte Carlo Method

5.A.1 Overview of KMC Simulation

The dynamics of a target rod particle situated in fixed point obstacles are analyzed using an

extended version of the kinetic Monte Carlo (KMC) method. For the implementation of the KMC

simulation for the current system, four assumptions are imposed:

1. The point obstacles are uniformly situated and fixed throughout the three-dimensional space.

2. The motion of the rod particle is described by the stochastic process, and the Markovian

process is induced; the collision is stochastically sampled only based on the current state of

the rod, Λ(t).

3. The interparticle interaction between the rod and the fixed obstacles is the hard-core poten-

tial. This means that any overlaps between the rod and point obstacles do not occur.

4. The collision frequency of the rod against an obstacle is assumed to be constant over a small

time interval, denoted as ∆tmax.

Based on the settings, the collision frequency of a rod for a given rod direction U , translational

velocity V , and angular velocity Ω is calculated. This frequency is used to sample the time interval

between successive collisions and the location of a collision on the rod surface. After the sampling,

the rod position, direction, and velocities of the translational and rotational degrees of freedom

are updated. From the time-dependent direction of the rod U (t), the collision frequency varies

between successive collisions. Consequently, the collision time interval distribution deviates from

a simple exponential function, making direct sampling of the time interval difficult. In order to

circumvent this challenge, the fourth assumption is introduced in the methodology. The current

strategy involves the introduction of a new parameter, denoted as ∆tmax. It is confirmed that the

outcomes derived from Kinetic Monte Carlo (KMC) simulations remain largely unaffected by the

magnitude of ∆tmax, provided it remains substantially smaller than the average rotation period

of the rod, as demonstrated in Figure 5.6. In the KMC simulations conducted for this study,

the value of ∆tmax chosen is significantly less than the average rotation period of the rod. More

precisely, ∆tmax is chosen as
√
βI/100. Here, I stands for the relevant component of the moment

of inertia tensor, and 1/2β is the averaged kinetic energy for each degree of freedom.



CHAPTER 5. INCREASE IN DIFFUSIVITY OF ROD IN OBSTACLES 87

5.A.2 Collision Statistics

This section explains the derivation of collision frequency density between the rod and point

obstacles, which is required for an input of the kinetic Monte Carlo scheme. The rod is characterized

by its length L, radius σ, mass M , and inertia tensor I, and it possesses a total kinetic energy of

5/2β. The amount of point obstacles is described by a number density denoted as ρ. For clarity

in physical interpretation, these physical quantities are presented with dimensions, as presented

in the main texts. The rod state is described by the translational velocity V (t), angular velocity

Ω(t), and the direction of its symmetry axis represented by U (t). The following relation between

U (t) and Ω(t) is maintained any time,

U (t) ·Ω(t) = 0. (5.2)

This equation holds because the relation U̇ = Ω(t)×U (t), and the magnitude of U remains con-

stant over time, 0 = U ·U̇ , where the dot symbolizes a time derivative. In the subsequent discussion,

Λ(t) is used to represent the time-dependent 8-dimensional phase space variable (V (t),Ω(t),U (t)),

which describes the rod state. Further, the effective velocity at the rod surface is introduced, de-

fined as Ve(l;Λ(t)) = V (t) + lΩ(t)×U (t). Here, l denotes the axial coordinate along U (t), with

its range specified as l ∈ [−L/2, L/2].

On the surface of the rod, collisions with point obstacles can occur at three distinct locations:

the cylindrical surface (side) or at one of the two half-spherical caps (edges). The collision point

on the surface is defined by two parameters: the axial coordinate l and the direction of the surface

normal at the collision point n, which is a unit vector as depicted in Figure 5.1. When the collision

occurs on the side of the rod, the normal vector n is oriented perpendicular to the vector U (t).

In the case of a collision at the edges, the value of l will be either +L/2 or −L/2. The collision

frequency density at a given point characterized by l and n for a specific state Λ(t), denoted as

ν(l,n;Λ(t)), is formulated as a sum of three terms: the side part and the two edge parts on the

rod surface as follows.

ν(l,n;Λ(t)) =
∑

µ∈{∥,−,+}

νµ(l,n;Λ(t)). (5.3)

A collision on the side of the rod ν̄∥(l,n;Λ(t)) is expressed as

ν∥(l,n;Λ(t)) = ρσVe(l;Λ(t)) · nΘ[Ve(l;Λ(t)) · n]δ(U (t) · n), (5.4)

For collisions at the ends of the rod, represented by ν±(l,n;Λ(t)), the expression is:

ν±(l,n;Λ(t)) = ρσ2Ve(l;Λ(t)) · n Θ[Ve(l;Λ(t)) · n]Θ[±U (t) · n]δ
(
l ∓ L

2

)
. (5.5)
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Here, the Heaviside step function is represented by Θ, while the Dirac delta function is denoted as

δ. To calculate the collision frequency, it is necessary to integrate the collision frequency density

ν(l,n;Λ(t)) over the surface of the rod particle. This requires performing the integration across

both the axial coordinate l and the surface normal n. For efficient calculations, it is advantageous

to adopt two distinct frames of reference that are suitably selected for the two types of collision

contributions, described in Equations (5.4) and (5.5).

■ Integration of ν∥. To carry out the integration of Equation (5.4), the reference frame is

adjusted so that the rod direction vector and the effective velocity are represented as U (t) = (0, 0, 1)

and Ve(t) = (Vr, 0, Vz), respectively, where Vr > 0. Consequently, the direction vector at the

collision point is given by n = (sin θ cosϕ, sin θ sinϕ, cos θ), with θ ∈ [0, π] and ϕ ∈ [−π, π).

Utilizing this coordinate system, the integration of Equation (5.4) over θ is performed, leading to:

ν∥(l, ϕ;Λ(t)) =

∫ π

0

dθ ν∥(l, θ, ϕ;Λ(t)) = ρσVr(l;Λ(t)) cos(ϕ)Θ[cosϕ], (5.6)

The integration over the angle ϕ on the surface normal leads to the collision frequency density on

the side at l

ν∥(l;Λ(t)) =

∫ π

−π

dϕν∥(l, ϕ;Λ(t)) = 2ρσVr(l;Λ(t)). (5.7)

Based on Equation (5.7), the calculation of the total collision frequency at the side, denoted as

ν̄∥(Λ(t)), is expressed as follows:

ν̄∥(Λ(t)) =

∫ L
2

−L
2

dl ν∥(l;Λ(t))

=
ρσL2Ω(t)

4

[
(a+ 1)c+ − (a− 1)c− − b ln

(
a− 1 + c−
a+ 1 + c+

)]
,

(5.8)

where various terms are defined for simplicity: Ω(t) = |Ω(t)| represents the magnitude of the

angular velocity, V (t) = |V (t)| denotes the velocity magnitude, c± =
√

(a± 1)2 + b, and

a =
2V (t) · (Ω(t)×U (t))

Ω2(t)L
, (5.9)

b =
4(V (t) ·Ω(t))2

Ω4(t)L2
, (5.10)

When the velocity vector V is parallel to the vector U , the parameters simplify to a = b = 0,

leading to the equation ν̄∥(Λ(t)) = ρσL2Ω/2. Notably, for Ω = 0, the frequency becomes zero,

which aligns with expectations.
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■ Integration of ν±. In the integration of Equation (5.5), a different frame of reference is

utilized. In the new frame, the direction of Ve(l;Λ(t)) = (0, 0, Ve(l;Λ(t))) is designated as the new

z-axis, while U (t) = (Ur, 0, Uz), with Ur > 0, establishes the new x-axis. Accordingly, the surface

normal vector is defined as n = (sin θ cosϕ, sin θ sinϕ, cos θ), where θ and ϕ are within the range

of θ ∈ [0, π] and ϕ ∈ [−π, π), respectively. Within this coordinate system, the collision frequency

density at the angle vector n is expressed as follows:

ν±(n;Λ(t)) =

∫ L
2

−L
2

dl ν±(l,n;Λ(t))

= ρσ2Ve

(
±L

2
;Λ(t)

)
· nΘ[±U (t) · n]Θ

[
Ve

(
±L

2
;Λ(t)

)
· n
]
.

(5.11)

When integrating Equation (5.11) over ϕ, the collision frequency density at θ is determined as

follows:

ν±(θ;Λ(t)) =

∫ π

−π

dϕν±(n;Λ(t))

=2ρσ2Ve

(
±L

2
;Λ(t)

)
cos(θ)Θ[cos θ]

×
{
πΘ [±γ(θ)−1] + cos−1(∓γ(θ))Θ [1−|γ(θ)|]

}
,

(5.12)

where γ(θ) is defined as γ(θ) = Uz cos θ/Ur sin θ. To obtain the collision frequencies at the two

edges, the remaining integration over θ is performed, leading to:

ν̄±(Λ(t)) =

∫ π

0

sin θdθ ν±(θ;Λ(t))

=
πρσ2

2

{ ∣∣∣∣Ve

(
±L

2
;Λ(t)

)∣∣∣∣± Ve

(
±L

2
;Λ(t)

)
·U (t)

}
.

(5.13)

■ Combining Integrated ν∥ and ν±. By Combining Equations (5.8) and (5.13), the total

collision frequency, denoted as ν̄(Λ(t)), for a specific set of parameters V (t), Ω(t), and U (t) is

obtained. This is succinctly expressed as:

ν̄(Λ(t)) = ν̄∥(Λ(t)) + ν̄+(Λ(t)) + ν̄−(Λ(t)). (5.14)

5.A.3 Protocol of KMC Simulation

The rod moves ballistically until it collides against a fixed obstacle. The collision is characterized by

the collision time interval ∆tc and the location at the collision point denoted as l and n. To sample



CHAPTER 5. INCREASE IN DIFFUSIVITY OF ROD IN OBSTACLES 90

these variables, the probability density of these variables is required. Here, the collision frequency

is not constant because the rod direction U (t) is time-dependent between the successive collisions,

and thus, the probability density is not straightforwardly obtained. To avoid this difficulty, the

collision frequency density is assumed to be constant within the ∆max (the fourth assumption).

Here, this assumption does not largely affect the result as far as ∆max is sufficiently smaller than the

mean rotational period, as demonstrated in Figure 5.6. Based on this assumption, the probability

density of the collision time interval for a given Λ(t) at the side and edges is simply expressed via

the exponential function using Equation 5.14:

P (∆tc;Λ(t)) = ν̄(Λ(t)) exp[−ν̄(Λ(t))∆tc]. (5.15)

Here, Equation (5.15) is valid within the range of 0 < ∆tc < ∆tmax.

Step 1: Sample Collision Time Interval ∆tc. Referring to Equation (5.15), the value of ∆tc

is sampled using the inversion method. Here, ∆tc should satisfies the criterion ∆tc ∈ (0,∞]).

Step 2: Update of Position and Direction Vector for ∆tc > ∆tmax When the sampled value

∆tc exceeds ∆tmax, it indicates that a collision has not occurred within the interval ∆tmax. In such

a case, the time t, the position R(t), and the direction vector U (t) are updated to t+∆tmax, R(t+

∆tmax) = R(t) + V (t)∆tmax, and U (t + ∆tmax) = (0,− sin(Ω∆tmax), cos(Ω∆tmax)), respectively.

This update is in accordance with a frame of reference where U (t) = (0, 0, 1) and Ω(t) = (Ω, 0, 0),

which define the z- and x-axes. Moreover, the velocity V and the angular velocity Ω remain

constant during this process, as represented by V (t + ∆tmax) = V (t) and Ω(t + ∆tmax) = Ω(t).

Following the update of the variables, the process returns to Step 1.

Step 3: Update of Position and Direction Vector for ∆tc < ∆tmax In the event that ∆tc

is less than ∆tmax, the time parameter t, the position R(t), and the direction vector U (t) are

updated in a similar manner. These updates are to t + ∆tc, R(t + ∆tc) = R(t) + V (t)∆tc, and

U (t+∆tc) = (0,− sin(Ω∆tc), cos(Ω∆tc)), respectively.

Step 4: Sample Side or Edge Utilizing the updated phase space coordinate Λ(t +∆tc), the

determination of whether a collision occurs at the side or the edges of the rod is made. This is

based on the collision frequencies described in Equations (5.8) and (5.13). The probability that a

collision occurs at the side is calculated as ν̄∥(Λ(t+∆tc))/ν̄(Λ(t+∆tc)). Similarly, the probability

of a collision occurring at the edges is given by ν̄±(Λ(t+∆tc))/ν̄(Λ(t+∆tc)).
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Step 5: Sample Location for Collision at Side When a collision occurs at the side of the rod,

the value of l is sampled using the probability density P (l;Λ(t+∆tc)), derived from Equations (5.7)

and (5.8), expressed as follows:

P (l;Λ(t+∆tc)) =
ν∥(l;Λ(t+∆tc))

ν̄∥(Λ(t+∆tc))
=

vr
N

=
| [1−U (t+∆tc)U (t+∆tc)]Ve(l;Λ(t+∆tc))|

N
,

(5.16)

where 1 represents the unit tensor, and N is the normalization factor. Using this probability

density, l is sampled within the range l ∈ [−L/2, L/2] using the rejection method. The probability

density for ϕ is derived from Equations (5.7) and (5.6), and is given as:

P (ϕ;Λ(t+∆tc)) =
ν∥(l, ϕ;Λ(t+∆tc))

ν∥(l;Λ(t+∆tc)
=

cos(ϕ)Θ[cosϕ]

2
. (5.17)

ϕ is sampled using the inversion method, expressed as ϕ = sin−1(1 − 2χ), where χ is a random

number uniformly distributed in the range χ ∈ [0, 1]. For a collision occurring at the side, the

angle θ is simply π/2. Consequently, the collision point l and the normal vector n at time t+∆tc

for a given Λ(t+∆tc) are determined.

Step 5: Sample Location for Collision at Edge In the event of a collision occurring at one

of the edges at l = ±L/2, the probability density for the normal vector n is formulated using

Equations (5.11) and (5.13). This is represented as:

P (n;Λ(t+∆tc)) =
ν±(n;Λ(t+∆tc)) sin θ

ν̄±(Λ(t+∆tc))
=

cos(θ) sin(θ)Θ[cos θ]Θ[±U (t+∆tc) · n]
N

, (5.18)

Here, N denotes a normalization factor, and the term sin(θ) is included to account for the solid

angle. Based on Equation (5.18), the angles θ and ϕ are sampled simultaneously using the rejection

method. As a result, the collision point, characterized by l and n at time t + ∆tc for the given

Λ(t+∆tc), is determined.

Step 6: Update Velocity V (t) and Angular Velocity Ω(t). After a collision, the velocity

V (t+∆tc) and angular velocity Ω(t+∆tc) are updated based on the sampled values of l and n.

For this computation, a frame of reference is utilized in which U (t + ∆tc) = (0, 0, 1) defines the

z-axis. Within this frame, two components of the inertia tensor, Ixx and Iyy, are equivalent to I,

which is expressed as:

Ixx = Iyy = I = M
5L3 + 20σL2 + 45σ2L+ 32σ3

60L+ 80σ
. (5.19)
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The hard-core potential between the sphero-cylinder and point obstacles does not generate torque

along the z-axis. Consequently, the rod does not rotate around the z-axis, and it is unnecessary

to consider Izz. Furthermore, the non-diagonal components of the inertia tensor I are zero in this

frame due to the symmetrical shape of the rod. The updated velocity V (t + ∆tc) and angular

velocity Ω(t+∆tc) after the collision are calculated using the following equations:

V (t+∆tc) = V (t) + ∆v n (5.20)

IΩ(t+∆tc) = IΩ(t) +Ml∆vU (t+∆tc)× n, (5.21)

Here, ∆v represents the change in velocity magnitude, which is derived from the conservation of

energy before and after the collision, expressed as Mv2(t)+ IΩ2(t) = Mv2(t+∆tc)+ IΩ2(t+∆tc).

The expression for ∆v is:

∆v = −2I [V (t) + lΩ(t)×U (t+∆tc)] · n
I + l2[U (t+∆tc)× n]2

. (5.22)

After updating V (t + ∆tc) and Ω(t + ∆tc), the next step is resampling ∆tc, i.e., restarting

the process from step (i). This algorithm is repeated to compute the time series data for the rod

position R(t), and velocities of the translational and rotational degrees of freedom, V (t) and Ω(t).

5.B Empirical Expression for Diffusion Coefficient

An empirical fitting function for the measured D, displayed in Figure 5.4 (b), is represented by:

D

V̄ Le

≈ 1

2ρσL2
e

+
11ρσL2

e

65[11 + 2(ρσL2
e)

2σ/Le]
, (5.23)

This function is consistent with the three scaling relations observed in Figure 5.4, namely (1)

D/V̄ σ ∼ 1/ρσ2Le, (2) D/V̄ σ ∼ ρL3
e, and (3) D/V̄ σ ∼ 1/ρσ3 for small, intermediate, and large

values of ρ, respectively. Equation (5.23) also quantitatively aligns with the KMC simulation

data in Figure 5.4(b), as illustrated in Figure 5.8. According to Equation (5.23), D/V̄ Le exhibits

a monotonic decrease with an increase in ρσL2
e for Le/σ ≤ 520/11 (aspect ratio approximately

24). For larger rod length, D/V̄ Le displays a local minimum and maximum as ρσL2
e increases.

Furthermore, Equation (5.23) enables the estimation of two crossover densities, ρ1↔2 ≈ 5.7 ×
(σL2

e)
−1 and ρ2↔3 ≈ 2.3× (σLe)

−3/2. These densities remain unaffected by temperature variations,

while D proportionally increases with V̄ = 1/
√
βM , a behavior typically observed in gas diffusion

[11,127,128] in fixed obstacle geometries.
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Figure 5.6: Scaled translational diffusion coefficient Dc/V̄ Le as a function of the scaled obstacle

density ρσL2
e with the various rod length Le, which is obtained using the KMC simulations.

Symbols express the results for ∆tmax =
√
βI/10. Curves represent the data for ∆tmax =

√
βI/100,

which have been displayed in Figure 5.4 in the main manuscript.

5.C Additional KMC Simulation Data

Figure 5.6 illustrates the relation between D/uσ and ρV̄ L2
e, using symbols for ∆tmax =

√
βI/10

and curves for ∆tmax =
√
βI/100. The overlapping data from these two ∆tmax suggest that the

KMC simulation results are largely independent of the magnitude of ∆tmax, provided it remains

significantly smaller than the rotational period, specifically ∆tmax ≪
√
βI. Figure 5.7 presents

the scaled rotational diffusion coefficient DrotLe/V̄ against the scaled obstacle density ρσL2
e as

derived from KMC simulations for cases where ρσ2Le < 1. Here, Drot is defined via the rotational

relaxation time τrot, following the equation Drot = (2τrot)
−1. The determination of τrot is achieved

through fitting the directional correlation function ⟨U (∆t) ·U (0)⟩ using the exponential function

exp(−t/τrot). This fitting procedure is limited to the data within the higher density regime, where

ρσL2
e > 3. In this regime, ⟨U (∆t) · U (0)⟩ demonstrates a monotonic decay, making it suitable

for fitting with the exponential function. Conversely, in the lower density regime (ρσL2
e < 3),

⟨U (∆t) ·U (0)⟩ shows a damped oscillatory behavior, rendering it unsuitable for such fitting.
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Figure 5.7: Reduced rotational diffusion coefficient DrotLe/V̄ plotted against the scaled obstacle

density ρσL2
e along with the error bars from the curve fittings, as obtained using the kinetic Monte

Carlo simulations. The asymptotic exponent, expressed as Drot ∼ V̄ /(ρL3
eσ), is also displayed.
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Figure 5.8: Fitting function for D as delineated by Equation (5.23) with various rod lengths Le,

depicted by black curves. For comparison, D calculated from the KMC simulation, as presented

in Figure 5.4(b), are illustrated using symbols. Based on Equation (5.23), it is estimated that the

upturn in D is unlikely for Le/σ ≤ 520/11.

5.D Protocol of Simulation

In the MD simulation, the system comprises a single mobile rod and, in contrast to the Kinetic

Monte Carlo (KMC) method, incorporates a significant number, precisely 108, of immobile point

obstacles. These obstacles are placed uniformly at a number density ρ within a three-dimensional

cubic box with periodic boundary conditions. The mobile rod is initially positioned in such a

manner that it does not overlap with any of the obstacles. Regarding the characteristics of the

mobile rod, it possesses a sphero-cylindrical shape. The radius, length along its axis, and mass

of the rod are denoted by σ, L, and M , respectively, consistent with the case for the KMC

simulation as in Figure 5.1. Additionally, the moment of inertia tensor of the rod is represented by

I (Equation (5.19)). This tensor is defined in a frame of reference where the vector U = (0, 0, 1)

designates the z-axis. The system total energy, represented by E, includes the kinetic energy from

both the translational and rotational degrees of freedom of the mobile rod, as well as the potential

energy EU arising from the interaction between the mobile rod and the fixed obstacles. This is

expressed as:

E =
MV 2

2
+

IΩ2

2
+ EU(R,U , {ri}), (5.24)
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Figure 5.9: Reduced mean energies against obstacle density, calculated from the molecular dy-

namics (MD) simulations. Squares symbolize the data points for mean translational energy

M⟨V 2(t)⟩/2, circles for mean rotational energy I⟨Ω2(t)⟩/2, and triangles for mean potential energy

⟨Eu(t)⟩, each normalized by ϵ. The total of these energy components remains constant throughout

the simulation. Each color represents the rod length: pink for Le = 66 σ, blue for Le = 402 σ, and

green for Le = 2502 σ.
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In this equation, I is defined as Equation (5.19). The variables V and Ω are the translational

and angular velocities of the rod, respectively. R and U denote the position and direction vectors

of the rod, respectively. Additionally, ri specifies the position of the ith fixed obstacle within

the system. In the MD simulation, the interparticle interaction is chosen by the Weeks-Chandler-

Andersen (WCA) potential working for the minimum distance from the major axis of the rod to

each obstacle, denoted as di = d(R,U , ri), which is formulated as:

EU(R,U , {ri}) = 4ϵ
∑
i

[(
σ

di

)12

−
(
σ

di

)6

+
1

4

]
, (5.25)

This equation applies when di is less than or equal to 21/6σ. Here, ϵ means the unit of energy

for the WCA potential. The computation of di = d(R,U , ri), indicating the minimum distance

from the rod major axis to the ith obstacle, is performed using Lumelsky’s algorithm [129]. At

the onset of the MD simulation, the initial velocities of the rod V and the angular velocity Ω are

assigned randomly so that the combined value of the kinetic energies, MV 2/2 for translational

and IΩ2/2 for rotational motion, equates to 5ϵ/2. As a result, the total energy E of the system

is maintained at 5ϵ/2 since the system is initially constructed without any overlaps between the

rod and the obstacles (U = 0). The dynamics of the rod within this system are computed using

a modified version of the Leap-Frog algorithm, specifically extended for rod-shaped particles [51].

The simulation spans a time duration of 107σ
√

M/ϵ, employing a step size of 10−3σ
√
M/ϵ for

each calculations. In Figure 5.5, the reduced diffusion coefficient, expressed as D/V̄ Le, is plotted

against the number density ρσL2
e for various lengths of the rod Le. Here, V is defined as 1/

√
βM ,

where 1/2β is the mean of the kinetic energy per degree of freedom, as determined in the MD

simulation. In the MD simulation, it is noted that the rod becomes completely immobilized at

sufficiently high number densities, specifically when ρσ2Le exceeds 1, where Le is defined as L+2σ.

This phenomenon of the rod being trapped is not the focus of this study. Therefore, the analysis

is limited to a range of number densities where ρσ2Le is less than 1, or equivalently expressed as

ρσL2
e ≤ Le/σ.

During the MD simulations, the total energy E of the system is distributed among its trans-

lational, rotational, and potential components. In Figure 5.9, the time-averaged energies, namely

M⟨V 2(t)⟩/2 for translational kinetic energy, I⟨Ω2(t)⟩/2 for rotational kinetic energy, and ⟨EU(t)⟩
for potential energy, are represented against the scaled number density of obstacles From these rep-

resentations, it is observed that the normalized kinetic energy terms, M⟨V 2(t)⟩/2ϵ and I⟨Ω2(t)⟩/2ϵ,
become values around 3/2 and 1 in the density range explored in the MD simulation, although

there is a slight reduction in these kinetic energies as the density of obstacles increases, particularly
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when approaching the threshold of the trapping density regime ρσ2Le ∼ 1.



Chapter 6

Conclusion

This dissertation numerically and theoretically explored the dynamics of particles immersed in

simple structureless media; the static properties are always an ideal gas. The summaries of each

chapter are presented as follows.

Chapter 2: Non-Gaussian Diffusion of Particle in Ideal Gas. The dynamics of a target

particle introduced into an ideal gas composed of point masses were examined through numerical

simulations. The target particle exhibits qualitatively different behavior against the mass of the

target particle and the number density of the gas particle. When the target particle is heavy, the

target particle exhibits simple ballistic and diffusive behavior in short and long timescales, respec-

tively. Meanwhile, when the target particle is lightweight, the non-Gaussian diffusion emerges.

Notably, when the gas particle is concentrated, the lightweight particle shows anomalous diffusion,

even though the structure of the gas particle is always that of the ideal gas. To clarify the origin

of the observed non-Gaussian anomalous diffusion, analyses focusing on the collisions between the

target particle and point masses were conducted. Consequently, it was revealed that this type of

diffusion originates from repeated collisions with the same gas particles.

Chapter 3: Fluctuating Diffusivity of Particle in Gas Mixtures: Numerical Study.

This chapter delved into the non-Gaussian diffusion of a minor lightweight particle in binary-gas

mixtures. To calculate the dynamics of the minor particle, the novel simulation scheme based

on the collision statistics between a minor particle and major gas particles was constructed. The

minor lightweight particle demonstrates an unusual diffusion behavior termed Brownian yet non-

Gaussian diffusion. This type of diffusion is attributed to the fluctuating diffusivity. The origin of

99
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the observed fluctuating diffusivity in the gas mixture was identified as the timescale separation

between the velocity direction and speed of the minor particle.

Chapter 4: Fluctuating Diffusivity of Particle in Gas Mixtures: Theoretical Study. To

reproduce the Brownian yet non-Gaussian diffusion in the binary-gas mixture, theoretical analyses

based on the Lorentz gas model were conducted. Specifically, the dynamics of a minor lightweight

particle in heavy gas particles are assumed to be that in the Lorenz gas model at a short time scale

where only a few collisions occur. The mean square displacement and non-Gaussian parameter

in the Lorentz gas model are analytically calculated, and they do not show the Brownian yet

non-Gaussian diffusion. To incorporate the effect that the minor particle speed takes various

magnitudes, the canonical ensemble averages for the mean square displacement and non-Gaussian

parameter were calculated. The averaged result successfully reproduces the Brownian yet non-

Gaussian diffusion of a minor lightweight particle in the binary-gas mixture.

Chapter 5: Increase in Diffusivity of Rod in Obstacles. This chapter numerically ex-

amined the dynamics of a rod-shaped particle moving through the fixed point obstacles in three-

dimensional space under the Markovian process. To calculate the dynamics of the rod, the stochas-

tic simulation based on the collision statistics between the rod and obstacles was constructed. It

was found that the diffusion coefficient of the rod decreases, increases, and decreases again with in-

creasing the obstacle density when the rod is sufficiently long. The power exponent in each regime

can be simply explained based on the timescales of the angular velocity and collision frequency of

the rod.

In conclusion, this dissertation revealed that the particle exhibits intriguing diffusion when the

particle is lightweight or elongated, even in simple structureless media; the particle can exhibit

anomalous non-Gaussian diffusion, Brownian yet non-Gaussian diffusion, and an increase in diffu-

sivity. Thanks to the simple nature of the studied systems, the observed dynamics were elucidated

based on the collisions between the target and media particles. The findings can be achieved by

the investigations in the simple structureless media. However, elucidated mechanisms potentially

hold for more complex media since they are not restricted to structureless media. The findings in

this dissertation may provide fresh insight into the studies for diffusion phenomena of a particle

diffusing in diverse, complex media.
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